

C-14 in wastes from LWR and its relevance to the longterm safety of waste disposal

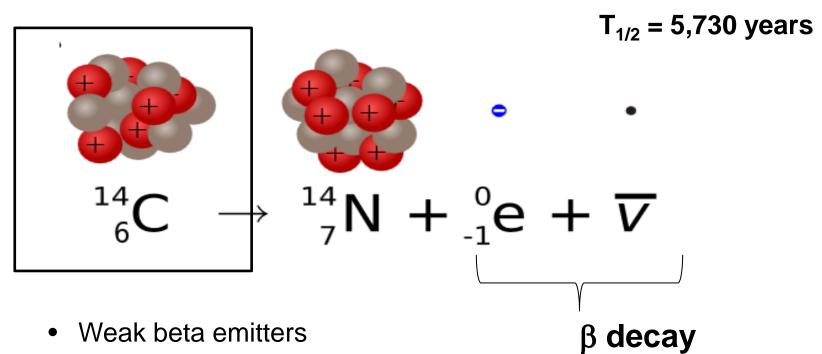
Vanessa Montoya (vanessa.montoya@kit.edu)

5. 07. 2016, Karlsruhe, Germany

Content

General Aspects of C-14

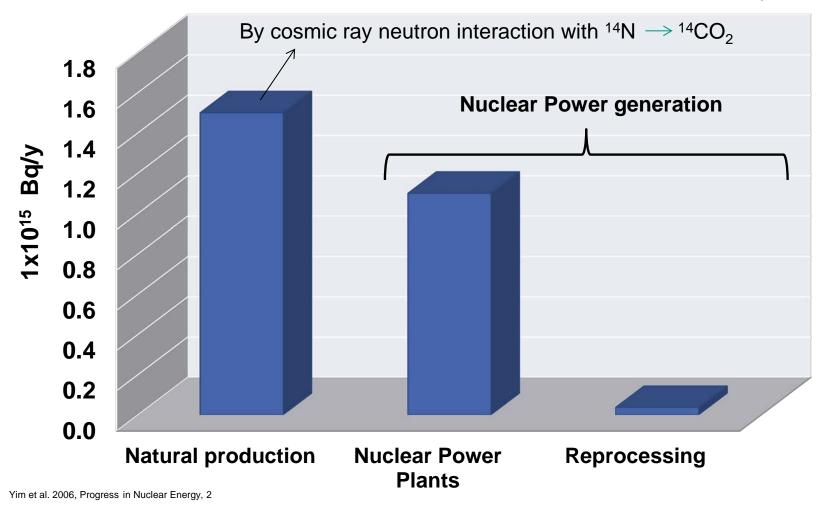
C-14 in the nature


C-14 from human activities

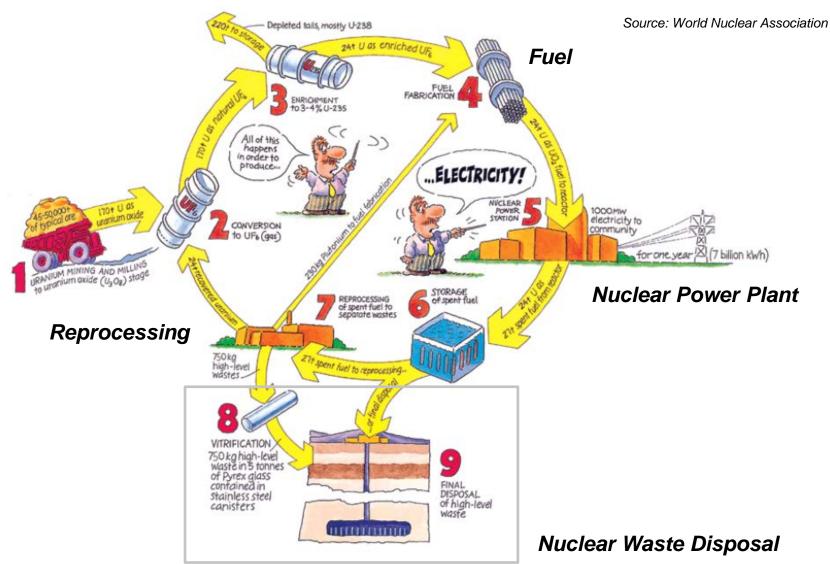
- Source of C-14 in Nuclear Power generation (LWR)
- Transformation of C-14 during storage and disposal

Carbon – 14

Radionuclide: β emitter

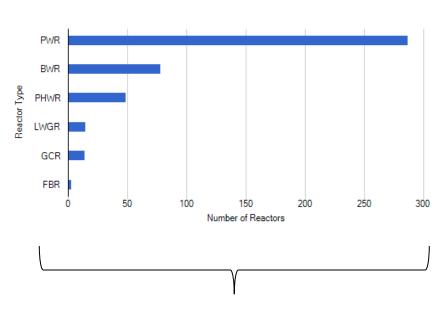

- Long half-live
- High isotopic exchange (12C and 13C)
- Incorporation into living organisms

Carbon – 14

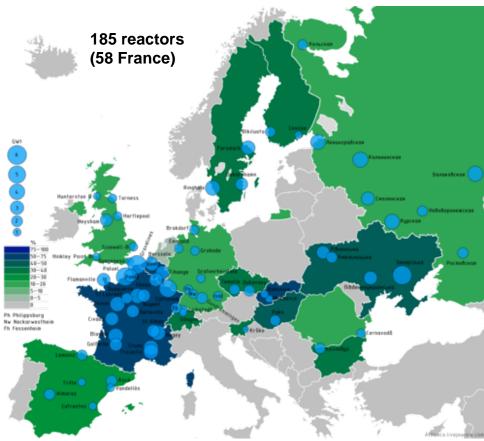

Production and release of C-14

Nuclear weapon testing (not anymore)

Nuclear Power generation



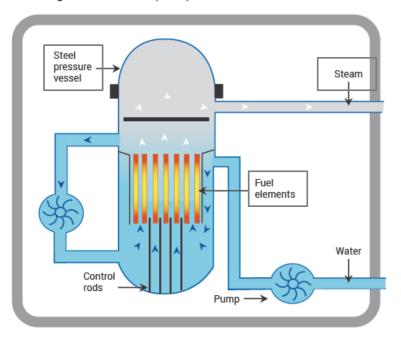
Karlsruhe Institute of Technology


C-14 world inventory

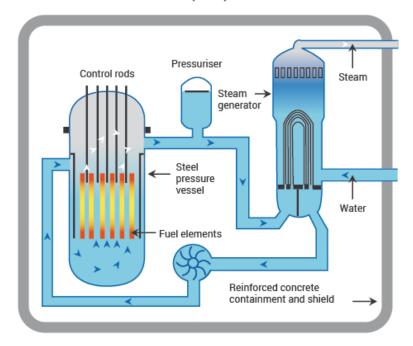
444 reactors in operation*

287 PWR + 78 BWR

Research reactors are not included



*Data from June 2016 (IAEA)



Type of Nuclear reactors: Light Water Reactors

A Boiling Water Reactor (BWR)

A Pressurized Water Reactor (PWR)

Moderator = coolant = Water

Slows down the neutrons released from fission To transfer the heat

Nuclear reactor primary system

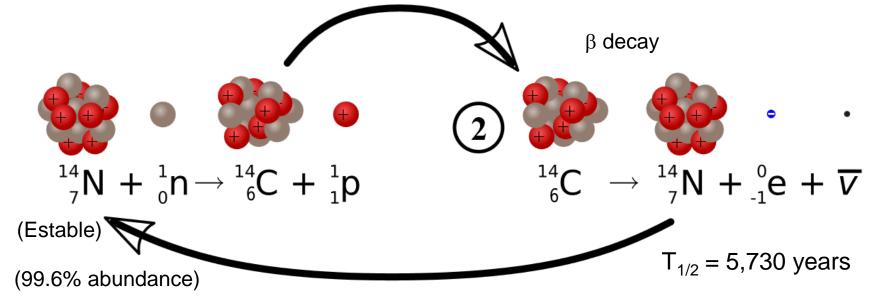
Type of Nuclear reactors: Light Water Reactors

Table 7
Global estimate of ¹⁴C production, by reactor type

Reactor type	Component	Production estimate TBq/GWe-y	% of world generating capacity	Cumulated production to date (to the end of 2003)	
				Estimated cumulat- ive ¹⁴ C production PBq	Available for release PBq
PWR	Fuel	0.72	65	2.6	
	Coolant	0.30		1.1	1.1
	Zircaloy+hard- ware ^a	0.38		1.4	
BWR	Fuel	0.73	23	0.9	
	Coolant	0.59		0.8	0.8
	Zircaloy+hard- ware ^a	0.51		0.7	
PHWR	Fuel	3.76	5	1.1	
	Coolant	0.38		0.1	0.1
	Moderator	27.0		7.6	7.6
Gas cooled	Fuel (Magnox/AGR/ HTR)	6.1/1.8/0.17	7	1.0	
	Coolant (")	0.31/0.3/~0		0.06	0.06
	Moderator (")	10.8/3.4/3.1		3.8	
Grand total-reactors worldwide				21.1	9.6

PHWR: fuel includes our proposed value which includes production due to nitrogen impurities in fuel. Gas-cooled, given in the order of (Magnox/AGR/HTR). Values taken from (Liepins and Thomas, 1988) and (Braun et al., 1983).

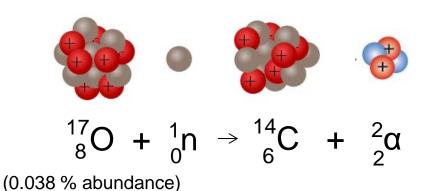
^a PWR and BWR updated values, based on Van Konynenburg (1994)—see text.



Source of C-14

From ¹⁴Nitrogen + neutrons

Component or impurity in <u>fuels</u> (cladding), moderators, coolants, structural hardware (metals).



Karlsruhe Institute of Technology

Source of C-14

From ¹⁷Oxygen + neutrons

From ¹³Carbon + neutrons

$${}^{13}_{8}C + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + \gamma$$

(1.1% abundance)

Graphite moderators

(Not relevant for LW Reactors)

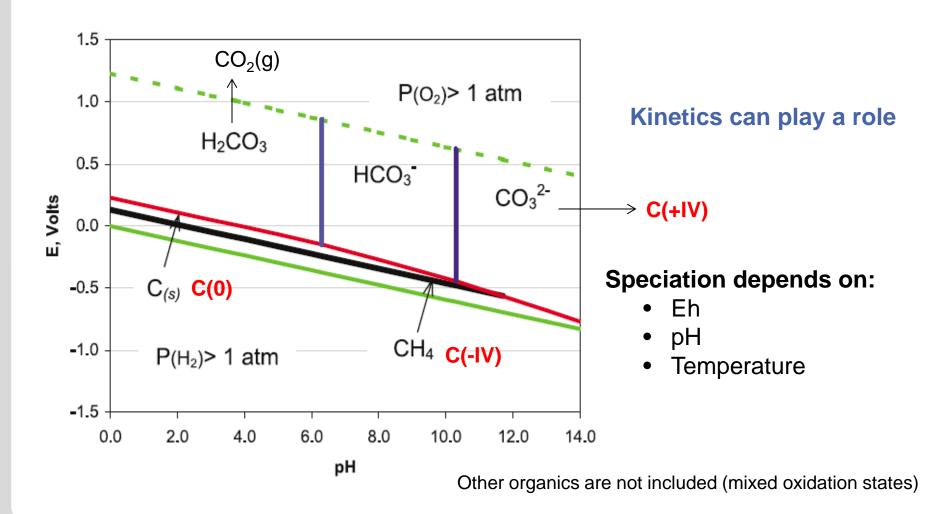
Oxide fuels, moderators = coolants (Water)

Source of C-14

Table 3 Annual normalized ¹⁴C production rates for the LWRs

Dominant mechanism
$^{17}O(n, \alpha)^{14}C$
$^{14}N(n, p)^{14}C$
$^{14}N(n, p)^{14}C$
l impurities UO ₂ PWR
$^{17}O(n, \alpha)^{14}C$
$^{14}N(n, p)^{14}C$
¹⁷ O in H ₂ O

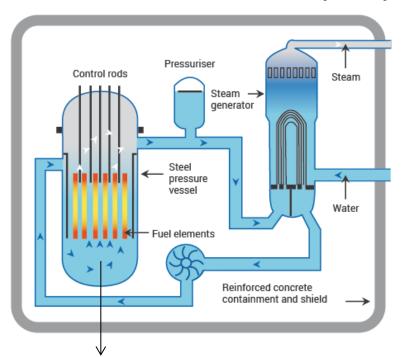
 ^a Based on median values of Tables 2.2 and 2.3 in (Bush et al., 1984); normalized for 20 ppm nitrogen impurities in fuel.
 ^b Based on calculations by Van Konynenburg (1994) using 25 ppm nitrogen impurities.


¹³CO₂ dissolved is negligible

 $1TBq = 10^{12} Bq$

Coolant

^c Values of (Bonka et al., 1974) (**op. cit.), updated by (Vance et al., 1995).


C-14 chemical system at 25°C

Karlsruhe Institute of Technology

Chemical conditions in LWR

Pressurized water reactor (PWR)

Reducing conditions

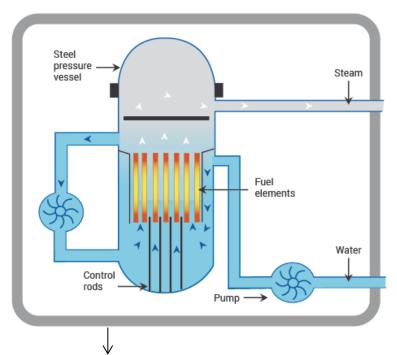
$$H_2 + {}^{14}C$$
? \longrightarrow ${}^{14}C$ - organics

$$^{14}\text{CO}_2 \longrightarrow ^{14}\text{C (s)}$$
 $^{14}\text{CH}_4 \text{ (g)}$
 $^{14}\text{C - organics}$

organics = formaldehyde + methanol

Reducing conditions (high P ~ 155 bar)

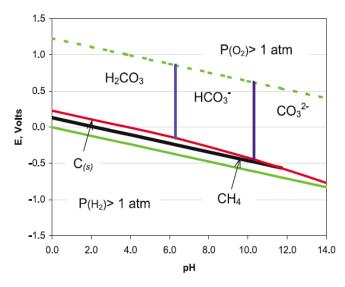
• H₂ 300°C


Coolant system = 58 - 95 % organics

 $(^{14}H_{2}CO)$ $(^{14}CH_{3}OH)$

Chemical conditions in LWR

Boiling water reactor (BWR)

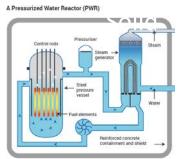

Oxidizing conditions

300°C and 72 bar

Vance et al. 1995, TR-105717. EPRI

Oxidizing conditions

$$^{14}C \longrightarrow ^{14}CO_2 (g)$$
 $H^{14}CO_3$



Coolant system = HCO_3^-

Chemical conditions in LWR and forms of waste

Gas production

Solid phase

Aqueous (coolant)

¹⁴C –organics

(colloids)

H¹⁴CO₃-

¹⁴CO₂ ¹⁴CH₄....

Treatment in the NPP

< 3 x 10¹¹ Bq/y
(3 order of magnitude lower than natural background)

Yim et al. 2006, Progress in Nuclear Energy, 2

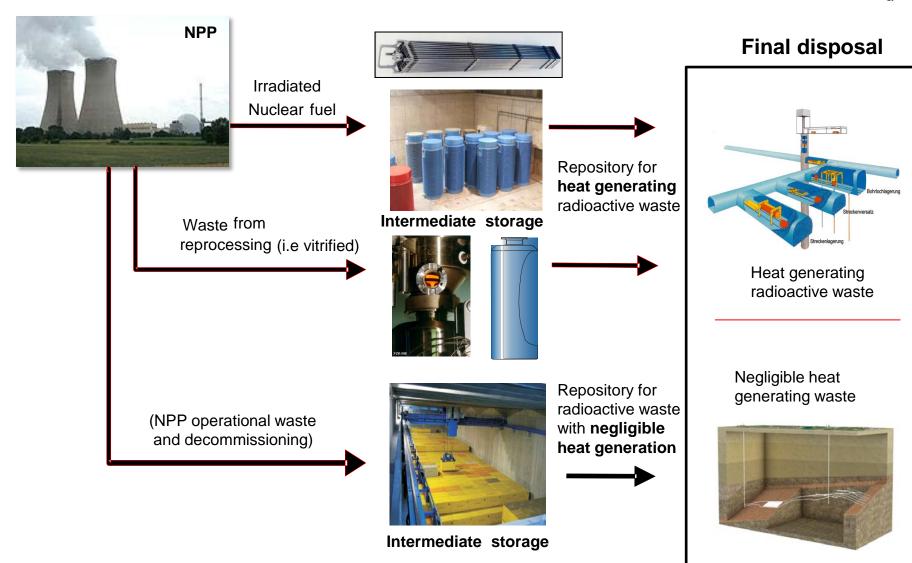
Structural fuel material

Steel (metals)

H¹⁴CO₃⁻
¹⁴C –organics
(colloids)

Form of waste in LLW

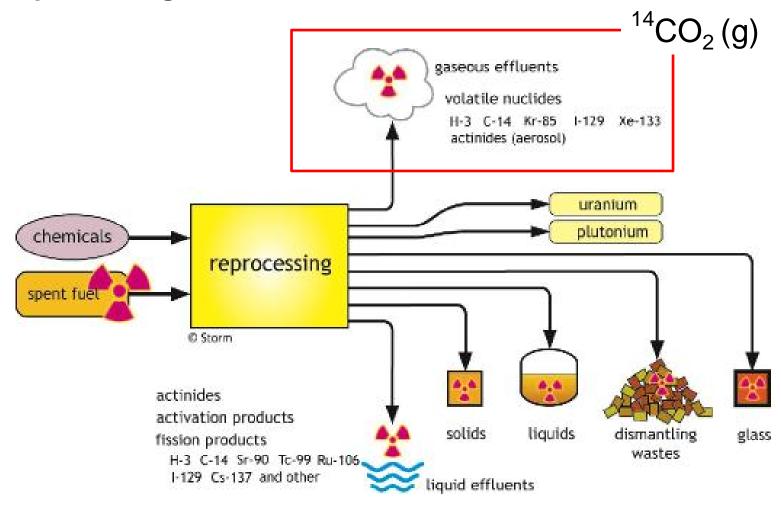
Initial inventory of ¹⁴C


Table 6 Distribution of ¹⁴C in LWRs

Waste form description (as stated in Manifest)		Distribution (%)	
Ion Exchange Resins Irradiated Hardware Mixed DAW Solidified Liquids Filter Media Cartridge Filters Solid Non-combustibles Incinerator Ash Air Filters Biological Wastes Cement Sorbent None Total	Dry radioactive waste: plastic, textiles and cellulose, in the form of protective clothing, rags, paper etc.	48.8 24.1 13.6 4.4 3.6 2.7 1.2 Reactor coolant Clear 0.15 (Recently increase d 0.15 of sub-micron siz	ue to the use
Class		77.7	
A		31.3	
В		15.6	
C		53.1	

Yim et al. 2006, Progress in Nuclear Energy, 2

Radioactive waste



Radioactive waste

Reprocessing

Karlsruhe Institute of Technology

LLW

A Boiling Water Reactor (BWR) pressure T^{\wedge} A Pressurized Water Reactor (PWR)

Operational waste (effluent treatment, circuit, etc)

Resins

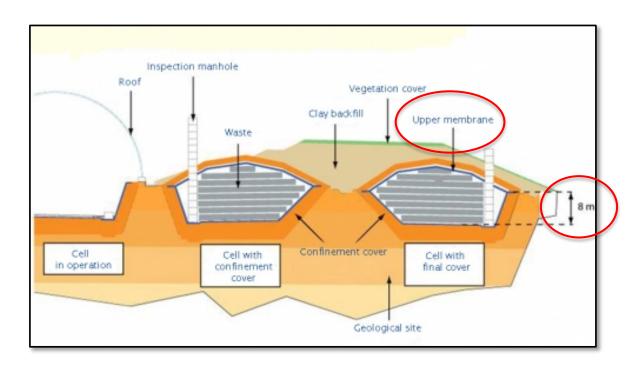
Chemical transformation

Temperature
Redox conditions (O₂)
Microbial activity
Degradation
Contact with chemicals

 $H^{14}CO_3^{-1}$

Intermediate storage

 HCO_3^{-1} C(s), ?


¹⁴C - organics

¹⁴CO₂(g)

Final storage

LLW - near surface disposal at ground level

Schematic diagram of a disposal cell (ANDRA-France)

Final storage

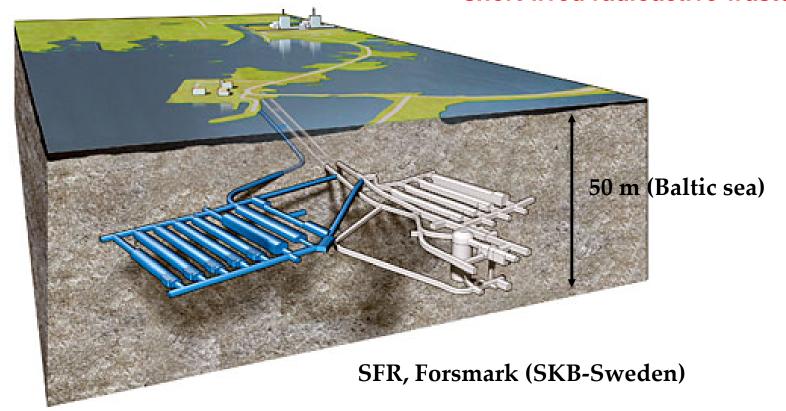
LLW - near surface disposal at ground level

LLW Drigg, Cumbria (NDA-UK)

LLW Rokkasho-Mura (JNFL-Japan)

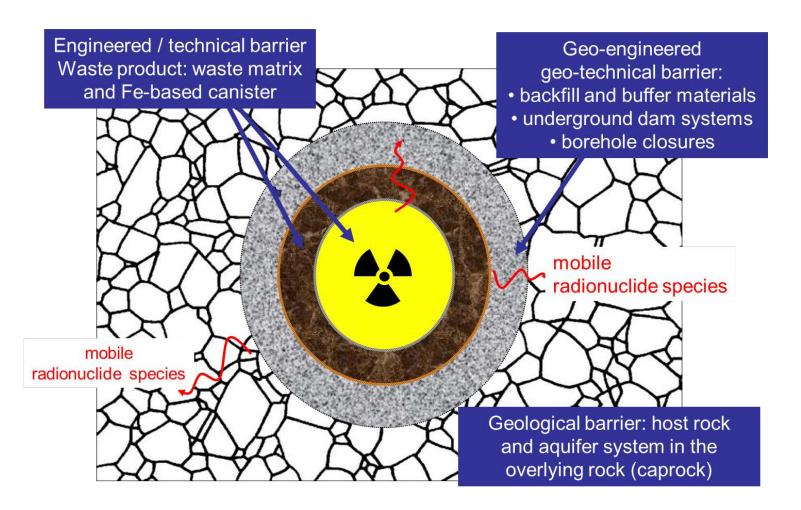
LLW-ILW EI Cabril (ENRESA-Spain)

LLW Texas Compact (WCS-USA)



Final disposal

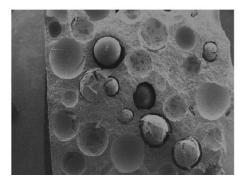
LLW/ILW - near surface disposal below ground level


short-lived radioactive waste

Final disposal

Karlsruhe Institute of Technology

Multibarrier system



Multibarrier system

Karlsruhe Institute of Technology


Waste matrix and waste container

Cement matrix

High pH porewater (> 12) Low porosity, permeability

Silicon carbide matrix

Properties close to diamond (expensive)

Synthetic polymers

Organic compounds Polyethylene, bitumen

Graphite matrix

(Very resistant to attack by natural environment)

Glassy carbon

Low porosity, permeability High temperature stability

Waste container

Highly durable waste container (metallic, High integry containers)

Management of ¹⁴C in LLW

Spent Ion exchange resins

Waste (NPP) **Interim storage Final disposal** Resins with ¹⁴C H¹⁴CO₃-¹⁴C - organics Degradation of the resins with ¹⁴C (SIER) Change enviroment Microbial actions (gas production) Groundwater infiltration 14**C** Treatment of the resins (solid matrix)

Separation Resin / ¹⁴C

Management of ¹⁴C in LLW

Irradiated steel

Waste (NPP)

Final disposal

Steel

Nuclear fuel assemblies

Stainless steel

(Decommissioning)

NPP structures

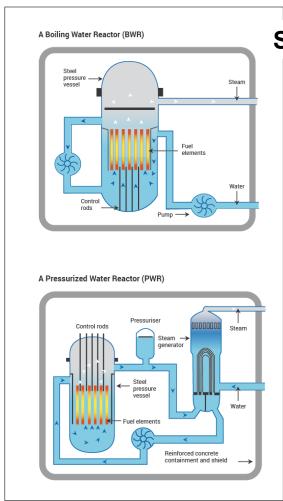
C-steel

Ni-alloys

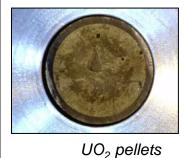
Cemented waste

Release of ¹⁴C by corrosion

Corrosion


Anaerobic conditions

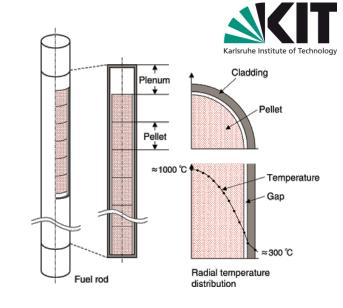
Aerobic

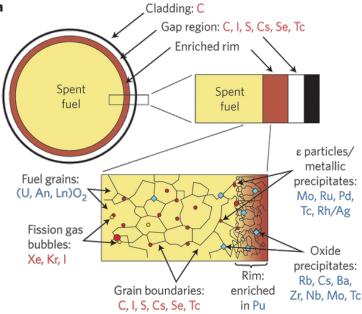

HCO₃-, alcohols?

Carbides $(M_{n-1}C_{2^*x})$ (covalent, ionic) + $H_2O \longrightarrow CH_4$ + hydrocarbons

HLW including Spent Fuel

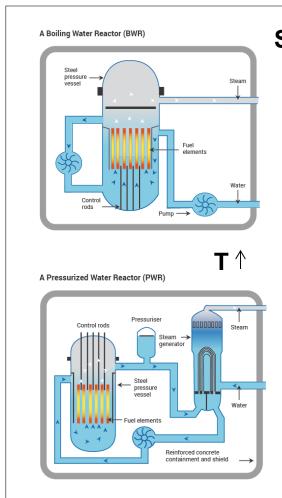
Spent Fuel




~95 wt% UO₂ matrix

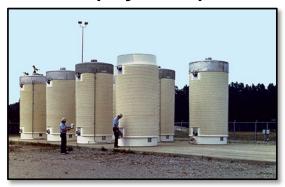
¹⁴N impurities
U¹⁷O₂ matrix

¹⁴C (especiation?)


+ n

Karlsruhe Institute of Technology

HLW including Spent Fuel


Spent Fuel

H¹⁴CO₃⁻
¹⁴C (especiation?)

Pools are monitored and cleaned (filters)

Intermediate storage (dry cask)

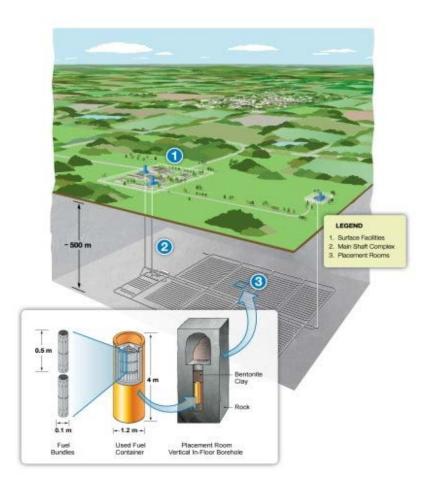
(pools)

Karlsruhe Institute of Technology

HLW including Spent Fuel

(dry cask)

Zwilag's ZZL (Switzerland)


Final disposal

Karlsruhe Institute of Technology

HLW including Spent Fuel

Isolation is provided by a combination of engineered and natural barriers (rock, salt, clay) and no obligation to actively maintain the facility is passed on to future generations.

A multi-barrier concept, with the waste packaging, the engineered repository and the geology all providing barriers to prevent the radionuclides from reaching humans and the environment.

Management of ¹⁴C in HLW

Spent Fuel

Waste (NPP) **Interim storage Final disposal** KBS-3H Host rock Backfill **Spent Fuel** (including zircaloy) Corrosion Release of ¹⁴C by corrosion Aerobic Anaerobic conditions Release from SF?

Dose of ¹⁴C in spent fuel very small compared with other radionuclides

(Matrix dissolution, IRF)

Presentation E. Gonzalez-Robles

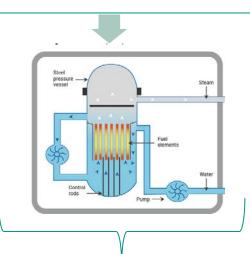
What have we learnt?

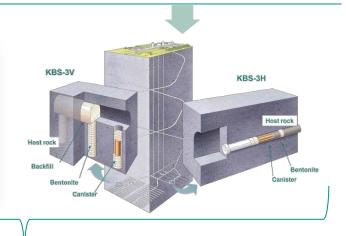
Production of C-14

C-14 in the nature

C-14 from human activities (Nuclear Energy production)

- Source of C-14 in Nuclear Power generation (LWR)
- Transformation of C-14 during storage and disposal


What have we learnt?


Nuclear PP

Interim storage

Final disposal

Source of ¹⁴C

Spent Fuel Metallic Structures Ion exchange resins

H¹⁴CO₃- (inorganic)

¹⁴C - organics

Transformation

Temperature
Redox conditions (O₂)
Microbial activity
Degradation
Contact with chemicals
Corrosion

¹⁴C waste

H¹⁴CO₃- (inorganic)

¹⁴C - organics

¹⁴CO₂ (g)

Safety Analysis

Presentation V. Metz tomorrow

¹⁴C is a long lived radionuclide

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 604779 (CAST project)

http://www.projectcast.eu/