

EURATOM Collaborative Project CAST (CArbon-14 Source Term)

Release of radionuclides from SNF under deep geological repository conditions E. González-Robles

Karlsruhe Institute of Technology – Institute for Nuclear Waste Disposal (KIT-INE)

Training Course C-14 behaviour under repository conditions

5-6 July Karlsruhe(Germany)

Content

- Fuel cycle
- In reactor behaviour
- Geological disposal
- Instant release fraction
- Matrix dissolution

Fuel cycle

3

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Fission

- sustains chain reaction
- produces thermal energy
- 23 GWh/kg (coal, 10 kWh/kg)

Neutron capture

production of actinides

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

- Production of ¹⁴C
- Impurities on the UO_2 of:
 - ¹⁴N: impurity level of 25 ppm

■ ¹⁷O

Neutron capture during reactor operation:

$$\begin{array}{ccc} {}^{14}N & & \underbrace{(n,p)}{} & {}^{14}C \\ \\ {}^{17}O & & \underbrace{(n,\alpha)}{} & {}^{14}C \end{array} \end{array}$$

Nitrogen reaction is a factor 4 higher than the oxygen reaction

- Formation of fission products:
 - High neutron capture cross section
 - Competition with ²³⁵U
 - Part of the fuel elements must to be replaced
- The fuel utilization is referred to as burn-up (BU) and represents the cumulative fissions for an irradiation time
 - Ratio of the number of fissions to the number of initial uranium atoms (²³⁵U and ²³⁸U):

$$BU = \frac{\dot{\mathbf{F}} \cdot t}{N_U}$$

Energy produced per unit mass of initial uranium:

$$BU = 950 \cdot \frac{MWd \cdot \dot{F} \cdot t \cdot kg_{fissioned}}{kg_{fissioned} \cdot N_U \cdot kg_U}$$

The formation of the different fission products depends on its fission yield that represents the probability proportion in which the fission products are formed when the fission occurs

Classification

Fission gases and volatile FP's:

Br, Kr, Rb, I, Xe, Cs and Te

FP's forming metallic precipitates:

Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Se and Te

FP's forming oxide precipitates:

Rb, Sr, Zr, Nb, Mo, Se, Te, Cs and Ba

FP's dissolved as oxides in the fuel matrix:

Rb, Sr, Y, Zr, Nb, Te, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu

5th July 2016

9

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

- It is the ultimate step of the nuclear fuel open cycle:
 - Protect the human and his environment from the risks induced by the nuclear waste
 - Limit the consequences for further generations
- It is located at about 400 to 1000 m underground based on:
 - Isolation and confinement capacities of the geological formations.
 - Building of a barriers system around the SNF

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

10 5th July 2016

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Granite

+ tightness

+ plasticity

+ low solubility

+ mechanically stable
+ age of rock formation
+ moderate heat conductivity
+ good state of knowledge

- water bearing fractures

- moderate retention
- technical barriers imperative
- low temperature resistance

Finland, Sweden, Canada, Japan - low heat conductivity

+ high retention capacity

- low temp. resistance
- difficult mine construction

Switzerland, France Belgium, Germany

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Salt

14AST

+ tightness + plasticity + heat conductive + high temp. resistance + age of existing diapirs + good state of knowledge

- water soluble

- low retention capacity
- dissolution

Germany, USA

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

5th July 2016

- In case of container failure, as a result of several processes, the groundwater will reach the SNF releasing the radionuclides within
- The performance assessment of SNF in a potential future geological disposal system requires the understanding and quantification of the radionuclide release

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Radionuclide release can be divided into contributions from the three SNF zones: gap, grain boundary and grain matrix

- The case of ¹⁴C:
- Activation product ¹⁴C important contribution to calculated doses in release scenario → especially for organic/gaseous ¹⁴C species (t_{1/2} = 5730 years)
- Long-term safety analysis of deep geological repositories for nuclear waste
 - \rightarrow water access into repository needs to be considered

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Instant release fraction

- It is the fraction of the inventory released rapidly when the metal waste package and fuel cladding are first breached
 - Fission gases: Xe and Kr
 - Volatile elements: I, Cs and Cl
- The inventory and segregation of fission-product gases and volatile elements depends on:
 - Burn-up of the fuel
 - Reactor operating condition
- Instantaneous release can vary significantly depending on the type of fuel and its burn-up

Instant release fraction

- The IRF is of particular interest in safety assessments:
 - Long-lived

Instant release fraction

Burn-up (GWd/t _{HM})	48	60	54.4	50	.4	54.	.25	50).5	63
Sample			OS	S	F	S	F	S	OS	F
FGR	2 (4)	4 (8)	2.3	8.5		13.2		14.1		26.7
Cs	2 (4)	4 (8)	1.3	3.9	4.5	6.2	5.0	3.4	3.7	9.2
	2 (4)	4 (8)	3.2	15.7	16.4	9.0	3.9	10.8	15.6	11.5
Sr	1 (3)	1(5)	0.083	0.002	0.02	na	na	0.2	0.2	na
¹⁴ C	10	10	na	na	na	na	na	<1.5	<1	na
Тс	0.1 (3)	0.1 (5)	0.20	0	0	na	na	0.1	0	na
Pd	0.1 (3)	0.1 (5)	na	na	na	na	na	0	0	na
³⁶ CI	10	16	na	na	na	na	na	na	na	na
Sn	-	-	na	na	na	na	na	<0.2	<0.1	na
Мо	-	-	0.51	na	na	na	na	0.3	0.5	na
Rb	-	-	0.28	na	na	na	na			na

10 % of the ¹⁴C released from the oxide matrix during irradiation.

Radionuclide release can be divided into contributions from the three SNF zones: gap, grain boundary and grain matrix

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

22 5th July 2016

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (IKIT

SNF is a gamma (γ), beta (β) and alpha (α) emitting material with an activity depending on its BU and storing age

- First hundred years dominates the βradiation:
 - ¹³⁷Cs (half life of 30.2 years)
 - ⁹⁰Sr (half life of 28.1 years)
- After 100 hundreds years dominates αradiation:
 - Transuranides elements (²⁴¹Am, ²⁴⁰Pu, ²³⁹Pu)

- The most important parameter of the SNF dissolution is due to groundwater redox potential in contact with it
- It will be controlled by water radiolysis
- As a consequence of the water radiolysis:
 - Production of oxidising and reducing species as:
 - Radicals: OH^{\bullet} , $O_2^{\bullet-}$, $HO_2^{\bullet-}$, e_{aq} , $H^{\bullet-}$
 - Molecular form: O₂, H₂O₂, H₂
 - In the case of saline repositories:
 - CIO⁻, CIO²⁻, CIO³⁻

25

C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Karlsruher Institut für Technologie KIT

- In deep geological repository the expected conditions are reducing, but the oxidants produced by water radiolysis will lead to oxidising conditions
- Uranium can exist in three different oxidation states:
 - U(IV), U(V) and U(VI)
 - U(VI) is many orders of magnitude more soluble than U(IV)
- This oxidants will be located near to SNF being able to oxidise the UO₂ (as U(IV) in SNF) to a more soluble U(VI)

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Region 1: the dissolution process becomes extensive as the potential increases

Region 2 :

Irreversible oxidation of UO₂

Dissolution process starts at -300mV when the UO₂ is oxidised to UO₂²⁺

Region 3 :

- Small oxidation occurs
- Concentrated to the grain boundaries

Dissolution of fuel matrix

- Precipitation of secondary phases
- Depending on the characteristics of the **SNF** groundwater, uranium concentration in solution can reach saturation levels, which will lead to precipitation of secondary U(VI) phases under oxidizing conditions Ratio S/V UO^{2+} Local solution transport regime Detachment of U(VI) $UO_{2}(HCO_{3})^{2-a}$

Precipitation of secondary phases

Authors	Leachant	Secondary phases formed			
Wilson (1988), (1990)a,b	J-13 water at 85°C	Uranophane, Haiweeite, Soddyite			
Taylor et al., (1989)	Moisture and DIW	Schoepite			
Sunder et al., (1996)	60% saturated steam	Schoepite, soddyite			
Forsyth et al., (1992)	DIW	Dehydrated schoepite			
Stroes-Gascoyne et al., (1997)	DIW	Schoepite			
Finn et al., (1998); Finch et al., (1999)	EJ-13 water, vapour	Vapour: metaschoepite, schoepite LDRe: schoepite, soddyite, Na-boltwoodite HDR: Na-boltwoodite, ß-uranophane			
McNamara et al., (2003); Hanson et al., (2005)	DIW	Dry samples: schoepite, metaschoepite Wet samples: studtite, metastudtite			
Jégou et al., (2005)	CGW	Na-Si-U-P phases			

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

- Precipitation of secondary phases
- These secondary phases could have certain effects:
 - Suppress the corrosion process of UO₂ by blocking the SNF surface
 - Restrict the diffusive mass transport of species to and from SNF surface
 - Adsorb or incorporate others radionuclides released during the SNF corrosion delaying their release to groundwater
 - Lead to a local acidification within the pores in the secondary phase or within defects in SNF by restricting the diffusion of dissolved UO₂²⁺

Container corrosion

- The oxygen trapped in the repository after its closure will be consumed by bacteria and reducing minerals:
 - Groundwater becomes anoxic
 - Water in contact with iron canister starts the anaerobic corrosion of iron

$$Fe + 2H_2O \iff Fe (OH)_2 + H_2\uparrow$$

$$3Fe + 4H_2O \iff Fe_3O_4 + 4H_2\uparrow$$

Container corrosion

- Accumulation of H₂ in the canister
- Increase of H₂ pressure: formation of gas bubbles
- H₂ pressure ≥ 5MPa remains until α-activity threshold is reached (10000 years)
- Fe and H₂ may react with: radiolytic products and corrosion products from the SNF
- Fuel corrosion in presence of iron:

Fenton reaction:

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + OH^-$$

In presence of H₂:

$$Fe^{2+} + OH^{\bullet} \longrightarrow Fe^{3+} + OH^{-}$$

 $H_2 + OH^{\bullet}$ $H^{\bullet} + H_2O$ \longrightarrow

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Container corrosion

- Fuel corrosion in presence of H₂:
 - Suppression of fuel corrosion and radionuclide release
 - Consumption of radiolytic oxidants by H₂ is a surface catalysed process

Summary

37 5th July 2016

Training Course C-14 behaviour under repository conditions 5-6 July Karlsruhe(Germany

Institut für Nukleare Entsorgung (INE) Karlsruher Institut für Technologie (KIT

Thank you for your attention