CArbon-14 Source Term CAST

Name: Michel Herm Organisation: KIT-INE Date: July 06, 2016

The project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 604779, the CAST project.

Outline

Separation and analysis of gaseous/dissolved C-14 compounds in structural parts of irradiated LWR fuel elements

Training Course C-14 behaviour under repository conditions

July 05–06, 2016, Karlsruhe, Germany

- Introduction
- Materials and irradiation characteristics
- Preparation of subsamples
- Dissolution experiments involving Zircaloy-4 and stainless steel
- Extraction of ¹⁴C from gaseous and aqueous samples
- Methods (LSC, gas-MS, γ-spectroscopy)
- MCNP calculations
- Results

- ¹⁴C is a key radionuclide in safety assessments of geological disposal systems for nuclear waste
- Chemical form of ¹⁴C upon release unknown and $t_{1/2} = 5730 a$ \rightarrow ¹⁴CO, ¹⁴CO₂, gaseous/dissolved hydrocarbons
- Speciation crucial to assess mobility/retention of ¹⁴C upon release
 → gaseous/dissolved hydrocarbons hardly retained in technical/geo-technical
 barriers
- Until now: transfer of total ¹⁴C inventory to biosphere considered in safety assessments

- Physical formation of ¹⁴C in fuel assemblies by
 - neutron capture reactions
 - ternary fission in the fuel

during reactor operation

$${}^{14}_{7}N(n,p){}^{14}_{6}C \qquad {}^{14}_{7}N + {}^{1}_{0}n \to \left[{}^{15}_{7}N\right]^* \to {}^{14}_{6}C + {}^{1}_{1}p$$

$${}^{17}_{8}O(n,\alpha){}^{14}_{6}C \qquad {}^{17}_{8}O + {}^{1}_{0}n \to \left[{}^{18}_{8}O\right]^* \to {}^{14}_{6}C + {}^{4}_{2}He$$

$${}^{13}_{6}C(n,\gamma){}^{14}_{6}C \qquad {}^{13}_{6}C + {}^{1}_{0}n \to \left[{}^{14}_{6}C\right]^* \to {}^{14}_{6}C + \gamma$$

ternary fission in LWR fuel 1.7×10^{-6} per thermal ²³⁵U fission 1.8×10^{-6} per thermal ²³⁹Pu fission

- N and C are present as impurities in fuel, Zircaloy cladding and structural parts of LWR fuel assemblies
- ¹⁷O is a stable low-abundance, naturally occurring istope
- Exemplary N impurities and calculated ¹⁴C inventories of spent PWR fuel assemblies with an average burn-up of about 50 GWd/t_{HM}:

material	N impurity [ppm]	calculated ¹⁴ C inventory [Bq/g]	
PWR SNF	~10	~27200	
Zircaloy-4	~40	~30000	
stainless steel	~500	~80000	

- N, C in Zircaloy / stainless steel **before** irradiation is potentially present as
 - interstitial solid solution
 - N also present as nitrides of alloying metals
 - C also present as metal carbides
 - carbonitrides maybe also form
- ¹⁴C is potentially present in Zircaloy / stainless steel **after** irradiation as
 - interstitial ¹⁴C from interstitial N
 - carbides / carbonitrides
- Corrosion leads to formation of volatile and/or dissolved compounds
 - hydrocarbons/CO (carbonates from oxides)
- Chemical state of ¹⁴C is far from clear in Zircaloy / stainless steel / spent nuclear fuel

LWR fuel assembly parts

Origin of the material used in this study

В

36

- pin KKG–SBS1108 consists of five fuel rod segments + two dummy segments
- Zircaloy-4 cladding specimen are sampled from the plenum of fuel rod segment SBS1108–N0204
- fuel rod segment with UO₂ fuel pellets (3.8 wt.% ²³⁵U), fabricated by "Kraftwerk Union AG" (today Areva)

Irradiation characteristics of SBS1108

- Irradiated in the Swiss Gösgen PWR during four cycles (1985–1989) •
- 1226 effective full power days
- Average burn-up: 50.4 GWd/t_{HM}
- Average linear power: 260 W/cm
- Max *T*: > 1300°C
- Stored gas tight until 2012 •

Preparation of subsamples

• Preparation of small subsamples by dry cutting in hot cell

Dissolution experiments in autoclave

dissolution of Zircaloy-4 subsamples in glove box using an autoclave

- cladding sample placed in autoclave
- autoclave sealed air tight
- gas collecting cylinder mounted on top
- flushing with Ar or N_2
- 20 mL 16% H₂SO₄ + 3% HF added
- p(autoclave) ~ 1.4 bar

gas-MS

Dissolution experiments in autoclave

dissolution of stainless steel subsample in hot cell using an autoclave

- autoclave sealed air tight
- gas collecting cylinder mounted on top
- flushing with Ar
- 150 mL 24% H₂SO₄ + 3% HF added
- digestion of steel sample within a day at RT

¹⁴C extraction system

Extraction of ¹⁴C from digestion liquor

• ¹⁴C is a difficult radionuclide to measure: pure soft β^- emitter (no γ -rays)

Extraction of ¹⁴C from digestion liquor

• ¹⁴C is a difficult radionuclide to measure: pure soft β^- emitter (no γ -rays)

¹⁴C extraction – literature

- Aittola and Olsson (1980)
- Speranzini and Buckley (1981)
- Nott (1982)
- Bleier et al. (1983, 1984, 1987, 1988)
- Salonen and Snellman (1981, 1982, 1985)
- Martin et al. (1986, 1993)
- Moir et al. (1994)
- Stroes-Gascoyne et al. (1994)
- Vance et al. (1995)
- Yamaguchi et al. (1999)
- Magnusson et al. (2005, 2008)
- Schumann et al. (2014)

¹⁴C extraction – literature

- Aittola and Olsson (1980)
- Speranzini and Buckley (1981)
- Nott (1982)
- Bleier et al. (1983, 1984, 1987, 1988)
- Salonen and Snellman (1981, 1982, 1985)
- Martin et al. (1986, 1993)
- Moir et al. (1994)
- Stroes-Gascoyne et al. (1994)
- Vance et al. (1995)
- Yamaguchi et al. (1999)
- Magnusson et al. (2005, 2008)
- Schumann et al. (2014)

Similarities of methods:

- use of flasks and washing bottles
- alkaline traps \rightarrow ¹⁴CO₂
- acidic traps \rightarrow ³H
- furnace (CO, $CH_4 \rightarrow CO_2$)
- acid stripping/digestion
- wet oxidation
- carrier gas (N₂)
- vacuum pump
- Liquid scintillation counting

¹⁴C inventory in used CANDU fuel

¹⁴C inventory/chemical form in Zircaloy

¹⁴C chemical form in ion exchange resin

¹⁴C inventory in stainless steel

Schumann et al. (2014)

- Fuel assembly guide tube nuts (stainless steel) irradiated in PWR Gösgen (CH)
- Concentrated HNO₃/HCl (aqua regia) + $H_2SO_4/HClO_4/HNO_3$
- ¹⁴C inventory determined by liquid scintillation counting (LSC)

Magnusson et al. (2005, 2008)

- Spent ion exchange resins and process water from nine PWR and BWR (Sweden)
- $6/8 \text{ M H}_2\text{SO}_4$ (acid stripping) + $K_2S_2O_8/\text{AgNO}_3$ (wet oxidation)
- ¹⁴C inventory and chemical form determined in washing bottles using LSC

Yamaguchi et al. (1999)

- Zircaloy-4 with/without oxide layer irradiated in PWR (47.9 GWd/ t_{HM})
- HNO₃ + HF
- ¹⁴C inventory determined in washing bottles (chemical form of ¹⁴C determined in leaching experiments)

Recovery: 80-100%

Stroes-Gascoyne et al. (1994)

- Used CANDU fuels (5.4–15.5 GWd/ t_{HM}), one pellet of about 20 g
- Boiled in 50% $HNO_3 + 1.6 M Na_2S_2O_8$, 6 h under refluxing
- ¹⁴C inventory determined by LSC

Experimental set-up:

- Flask with cooler and washing bottles
- N₂ as carrier gas
- ³H trap (0.1 M HNO₃)
- ¹⁴C trap (0.2 M NaOH)
- furnace (CuO, 500°C)
- activated charcoal filter to remove ¹²⁹I

¹⁴C extraction set-up and procedure

¹⁴C extraction set-up and procedure

¹⁴C extraction set-up and procedure

Methods: LSC measurements

- Determining activity of a radioactive sample by mixing the active material with a liquid scintillation cocktail (Toluene, Xylene)
- Radiation emitted by radionuclides transfers energy to solvent molecules
- Excited molecules relax back to ground state by emitting photons
- Photomultiplier converts and multiply light quanta into electrons which are subsequently detected by a semiconductor detector
- Detected light quanta are directly proportional to the decay energy

Methods: LSC measurements

- ultra-low level LSC spectrometer (Quantulus 1220, Wallac Oy, PerkinElmer)
- passive shielding (lead)
- active guard technology (active shielding)

 → remove natural background fluctuations by
 an anti-coincidence guard counter that detects
 cosmic and environmental γ radiation

Methods: LSC measurements

- Polyvials used for counting (20 mL, PE, Zinsser Analytic)
- ¹⁴C:
 - 3 mL sample solution (NaOH, collected from washing bottles #3, #4, #7, #8)
 - mixed with 18 mL scintillation cocktail (Hionic Fluor, PerkinElmer)
 - measuring time: 3 × 30 min
- ⁵⁵Fe:
 - separated from other radionuclides present in the digestion liquor by extraction column
 - 1 mL sample (1.5 M HCl) mixed with 10 mL scintillation cocktail (Ultima Gold LLT, PerkinElmer)
 - measuring time: 1 × 30 min

Methods: γ measurements

- Solid-state detectors (semiconductor detectors) e.g. high purity germanium (HPGe) used
- Rely on detection of electron-hole pairs generated by $\gamma\text{-rays}$ in semiconductor material
- Electrons and holes move to respectively charged electrodes due to electric field applied to the detector and create electrical signal

Methods: γ measurements

- Determination of ¹²⁵Sb and ¹³⁷Cs
- Extended range coaxial Ge detector (GX3018, Canberra Industries Inc.)
- APEX screw-cap microcentrifuge tubes (2 mL, PP, Alpha Laboratories Ltd.)
- ¹²⁵Sb and ¹³⁷Cs:
 - 1 mL aliquot from digestion liquor
 - measuring time: 2–4 h
- ¹²⁵Sb (after cesium removal to lower background):
 - 2 mL of digestion liquor mixed with 0.1 g AMP*
 - filtration (0.45 μm) of CsAMP suspension
 - 1 mL filtrate used for γ-counting
 - measuring time: 2–4 h

*ammonium molybdophosphate

Methods: gas-MS

- Analysis for: H₂, N₂, O₂, CO₂, CH₄, Ar,... ([¹⁴C-compound] too low for analysis)
- samples are collected in a stainless steel miniature sampling cylinder (V = 50 mL) with two valves (SS-4CS-TW-50, Swagelok)
- quadrupole gas mass spectrometer (GAM400, InProcess Instruments) equipped with secondary electron multiplier (SEM) detector, Faraday cup and batch inlet system
- calibration performed in the same pressure range as samples;
 10 measurements are performed with the SEM detector

MCNP inventory calculations

- Calculation of the radionuclide inventory of the irradiated plenum Zircaloy-4 cladding (30 ppm N) and plenum stainless steel spring (80 ppm N)
- Monte Carlo N-Particle transport code (MCNP-X)
 - taking into account nominal composition of unirradiated Zircaloy-4 cladding and stainless steel spring
 - taking into account dimensions, weight and density of the material
 - direct surrounding of the material and (vertical) position in the fuel assembly and nuclear reactor
 ZrO₂ 10.75 mm - Zircalov-4
 - taking into account irradiation characteristics

Results – digestion of Zircaloy

Digestion of irradiated Zircaloy releases quantitatively gaseous ¹H−³H (HT)
 → catalytic furnace oxidize HT to HTO, which is absorbed in washing bottles after the furnace

Results – Zircaloy-4

- Experimental and calculated results in good agreement for ¹⁴C, ⁵⁵Fe, ¹²⁵Sb
- Experimental activities agree, within analytical uncertainty, with calculations
- Experimental ¹³⁷Cs inventory exceeds calculated by factor 117 \rightarrow ¹³⁷Cs precipitation on inner surface of irradiated Zircaloy cladding

Results – Zircaloy-4

- ~99% of ¹⁴C as gaseous/dissolved hydrocarbons or carbon monoxide
- Similar ratio between organic and inorganic ¹⁴C bearing compounds in aqueous and gaseous phase

Results – stainless steel

 Preliminary results: ¹⁴C inventory and chemical form of ¹⁴C after release from stainless steel

radionuclide	experimental [Bq/g]	calculated [Bq/g]	factor
¹⁴ C	2.7(±0.3)×10 ⁵	$8.5(\pm 0.9) \times 10^4$	3.1

- Experimental and calculated results agree within a factor ~3 for ¹⁴C
 → great uncertainty of nitrogen content in stainless steel (0.04–0.1 wt.%)
- ~99% of ¹⁴C as gaseous/dissolved hydrocarbons or carbon monoxide

Thank you for your attention!