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» Lecture of Prof. F.). Elorza (UPM)
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» Lecture of Dr. I. Paiva and Dr. M.). Reis (IST)
Radiation protection issues

» Lecture of Prof. B. Bazargan Sabet (UL)
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» PhD/early stage researcher presentations

Lecture of Prof. A. Gens (UPC)
Coupled THM analysis for radioactive waste gealogical
disposal

Lecture of Prof. J.M. Montel (UL)
Natural analogue studies in the geological disposal of

radioactive wastes

Lecture of Dr. Erika Neeft (COVRA)
Carbon-14 Source Term

Lecture of Prof. K. Pedersen (Micans)

Bacterial life in clay barriers surrounding radioactive waste in

geological repositories
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e Radionuclides

— Generation in a nuclear plant
* Fission, activation

— Left for (geological) disposal

e ETM and DTM
— carbon-14
» Clearance level carbon-14 in waste in EU

* Disposal of waste

— Potential migration of released radionuclides
* @Gas, dissolved, retarded

e Natural carbon-14
— Generation
— Exposure

* Potential exposure mechanism artificial carbon-14 if released as gas
— Carbon-14 Source Term
* Types of waste investigated

* Potential release mechanisms at (geological) disposal conditions
— Cementitious materials
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Generation
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Generation
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Example RN left for disposal
from decay and fission

137CS

Easy To Measure (ETM) radionuclide:

during decay gamma’s are emitted that can
easily be detected with gammaspectrometry
= activity concentration can be determined
non-destructively




Example RN left for disposal
from decay and fission

135CS
Difficult To Measure (DTM) radionuclide
No emission of gammas during decay =
Activity concentration to be measured invasively if needed
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Examples RN left for disposal

from decay and fission

Thermal fission U-235 yield relevant for geological disposal / %
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O Example RN left

GAST from fission, decay and activation

Easy To Measure (ETM) radionuclide

IAEA



¢ Example RN left perhaps for disposal
——— . .
GAST from activation

Easy To Measure (ETM) radionuclide
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Fraction in activity left: {1/,}109/t05 for 60Co=0,0000019
i.e. reduction of a million




o Neutron activation

* |dentification activation path to obtain the
precursors

* Knowledge of the chemical content of
precursors

— Can be impurities



' ?
o ISRN relevant for disposal:

 Clearance levels in EU:

— Council Directive 2013/59/EURATOM of 5 December 2013
laying down basic safety standards for protection against the
dangers arising from exposure to ionising radiation, and
repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom,
Official Journal of the European Union, L13/1-73, 17.1.2014

— 14C: 1 Bqg per gram solid matter for example
0.000024 ppm in iron






Bucur, 2015



Difficult To Measure (DTM) radionuclide




Neutron activation

at about 300 K
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o Neutron activation

 Natural abundances
— Nitrogen-14 : 99.636%
— Oxygen-17: 0.038%
— Carbon-13: 1.07%

e Natural abundance + thermal cross sections for
the same carbon-14 contribution:

— Chemical content carbon >> 10° chemical nitrogen
content

— Chemical content oxygen >> 10’ chemical nitrogen
content



,L, Types of waste investigated
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Irradiated steel Steam-
also in core m

Irradiated Zircaloy

spent lon-exchanger resins  Condensor



—=  Carbon-14 act.conc.

* Knowledge nitrogen impurities for many types
of waste

— EU study (1984) limit nitrogen impurities
— |AEA (2004) for example

* limit air ingress primary coolant

* pH control primary coolant LiOH instead of hydrazine
NH,-NH,

* Neutron thermal flux and irradiation period

Bush, 1984; IAEA, 2004



o Origin nitrogen

@AST Manufacturing steel: nitrogen can be in
pig iron,
Cokes
Stirring gas
Nitrogen content frequently not reported
Steam-
generator

Reactor

vessal Blectricity

Manufacturing zircaloy

nit-rogen can F’e n lon-axchanger Condensor
Sponge ingot (Hafnium-free),

melt
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Natural
barrier system

Engineered
barrier system

Geological disposal of waste

.

Component

P Biosphere

Surrounding rock
formations

Host rock

—-

At
storage

Waste
package For
disposal

Waste form

Water transport (€ cicai Vt)
in natural evolution




—~= Geological disposal of waste
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1 Transport (C.qmical + radionuclidess Y.t) in Natural evolution
— Dissolved, gas
for example 14C if CH, must be assumed
Transport (C..mical+ mdionuclidess V1) in Natural evolution
Dissolved, ionic
for example 12% and 36Cl and 4C if HCO;~ may be assumed
" n Transport (C.qmical + radionuciidesr Y.t) in Natural evolution
leosphiers) 1 Retarded by sorption and ultrafiltration
for example complexes of actinides
T PAN
Near field




Gas, dissolved

* Waste types investigated in CAST

— Neutron irradiated metallic compounds

* Degradation: anaerobic corrosion

— Hydrogen generation rate

— Non-metallic neutron irradiated compounds



Free gas, dissolved gas

Identified in concrete?
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Advection and diffusion Visco-capillary flow of gas and Dilatancy controlled gas Gas transport in tensile
of dissolved gas water phase ("two-phase flow”) flow ("pathway dilation”) fractures ("hydro-/gasfrac”)

Wiseall, 2015



Gas, dissolved
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e Gas, dissolved
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e Gas, dissolved

-H, fast
HCOOH &—= CO+H,0

formicacid fast

'Hzo
+H2‘CN+H2

-H,
CH,0

formaldehyde

,\+‘Hz moderate

-Hz
CH,OH
methanol -H,0  veryslow
+H,
+H,0
+a (CHy

FiG. 4. Reaction scheme for the sequential reduction of CO, to methane (modified from McCollom and Seewald, 2007).

Wieland, 2015
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CAST project website home page & Newsletter 2



Exposure paths

 Inhalation

— No concentration actor if not used by living matter
for example noble gases

e Radiation exposure
— For DTM radionuclides not likely
* Ingestion

— Concentration actor if taken up by living matter
for example carbon

 Accumulation 14C

|AEA, BIOMASS & ICRP,2012



e Natural carbon-14
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Main exposure path for humans: ingestion s 010




,L, Potential artificial carbon-14 [

14C|_|4

Main exposure path: ingestion BIOPROTA



Generation

0.9 F — HO0 -
0.8 E graphite J

relative neutron flux

Assumption: 10 20 30 40 50 60 70 80 90

thermal diffusion distance from fuel elements / cm



O

oA Generation

Reactor building ~ Fuel _
. elements Graphite

.| ]

/ Turbine  Generator Electricity

| |

pump Condensor cooling water
Irradiated graphite, in CAST mainly LILW: moderator graphite instead of water

EU research project CarboWaste because HLW engineered barrier -
expected containment period several decay times of carbon-14 (t,,,=5730 years) Toulhout,2015



— Carbon-14 Source Term
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State Of the Art Report

Williams, Scourse: CAST project



,L, Radiological characterisation

Steam-
generator

Reactor
vessel

Irradiated steel

Corrosion resistance: stainless steel

Nitrogen stainless steel max 0.10 wt%
Core parts mainly activation

Minor contribution inner part vessel

Generator
Turbine ‘ Electricity

Cooling water

Irradiated Zircaloy

Nitrogen 34 £ 10 ppm but unknown yet: Spent ion- Condensor
if LILW = reprocessing waste exchanger

1) mixture with (foreign) wastes

2) Inconel ends

3) additional contribution capture

gaseous carbon-14

Unknown yet:
oxygen-17 reduction in 103 cross section included

Irradiated graphite (in CAST mainly LILW):
if nitrogen content larger than 15 ppm = main contribution to carbon-14



— Neutron irradiated steel B

e Core assumed 10° Bq per gram

* Quter parts for example vessel assumed 103
Bg per gram

— Sample vessel available in CAST 18 Bqg per gram
steel

Mibus,2015 & Capouet, 2017



= Neutron irradiated steel

oxide

Metal

Mibus, 2015
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Uniform corrosion rate (um/year)

Steel

00Sample preparation; fresh polished surface
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&
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Kursten, 2015



o= Neutron irradiated Zircaloy

e =~ 10%Bq *C per gram Zircaloy
— Tenfold lower nitrogen content than steel

— Operational waste not decommissioning waste
consequently smaller neutron irradiation period

* Carbon solubility smaller than nitrogen
solubility

— Small precipitate 14-carbides

Gras, 2014
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Uniform oxide \
' Nodular oxide

Zircaloy
20 um

Gras, 2014



o= Neutron irradiated Zircaloy

*'/L‘\ H+ - ,&’
ZrOz¢ - 1) 2 » — ’ ~ D;‘;/@MMT =~ 7
film { “A2) 44 J —— fZl’OtE —
[0 - e
(3) v2ir+ IV2ZrOn+24 »
Zircoloy!

(8) 2H*+2¢"=Hy
(@) Formation of (b) Break in ZrO, (¢) Formation of
ZrQ, and H, black film nodule

Typical appearance of nodular corrosion in visual inspection and

metallographic examination [ALL 2012] and mechanism of formation of
lenticular nodules [KUW 1983]

Gras, 2014



o= Neutron irradiated Zircaloy

S — — ~ . .
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200 pm

M5™ 5 cycles, stage 6
[AMB 2010] [AND 2012]

Hydride formation Gras, 2014
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Reported by AREVA
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—~= Spent ion exchange resins
at 300 K
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—~= Spent ion exchange resins
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| Water circulation LWR
Ful | Cladding | | Reactor components | | Coolant
l l , _
Reprocassing plant | Decommissioning | Leakage

" T .
Absorption from off-gas |

w

Dis::l:ﬂrga

¥

W
Immobilization

'

Disposal

Environment

IAEA,2004



o Neutron irradiated graphite

 Romania: contact-handled irradiated graphite
— see first CAST Newsletter

* |taly: remote-handled irradiated graphite

— Canzone G et al (SOGIN) Dismantling of the graphite pile of Latina NPP:
Characterization and handling/removal equipment for single brick or
multi-bricks, Progress in Nuclear Energy 93 (2016) 146-154



L Release mechanism

q./ Component

— S Biosphere

Surrounding rock
formations

Natural
barrier system

Host rock

Engineered

; T
barrier system ' e

At
storage

Waste
package For

disposal

Cementitious materials




— Release mechanism

e Source term: carbon-14 release rate or rates from
waste

* Release under conditions relevant for waste packaging
and disposal to underground facilities

— Cementitious matrices, main waste packaging conditions
considered in CAST

— Cement alkaline conditions

* Portland: initially slightly oxidising and largely unbuffered because
of lack of electroactive species

— corrosion of metals may reduce redox potential locally

* Blast furnace slag: initially reducing due small amount of FeS, —
blueish colour when not oxidised —

— corrosion of metals may locally sustain reducing conditions
— Underground
* Near-surface disposal: aerobic exposure conditions
* Deep geological disposal: anaerobic exposure conditions



GAeT Speciation

1.0 \)Eig} >0.21 atm i
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0.6 . \

HCO;;_ |

Surface disposal
maybe not if metals

Geological disposal
BFS cement
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Speciation measurement

Shielding

Gas chromatography (GC)

Oxygen sensor
Pressure sensor

<

Sampling system
for liquid phase

Eluent

| |
Reducing
«—{~ atmosphere

— — Activated
steel

O | Cement-type
pore water

Column

Fraction Oxidizer
collector “C,H,0,—"“CO,

Injector

M

1T =

N

H“COOH

lon chromatography (IC)

——

Sampling system
for gas phase

Oven Oxidizer Fraction
“CH,—"CO, collector

Inert
carrier i i i

Capillary column

o AN

“C-AMS

“C-AMS

Wieland, 2017



—= Conclusions / highlights
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e CAST finishes on 1 April 2018
— Final General Assembly Meeting in January 2018 in France (Lyon)

Submission abstracts before 1 September 2017

* During running research programme CAST
— State Of the Art reports at start of the programme

knowledge management
End-User view: what does experimental research contribute to what is already known?

— Determination activity concentration of carbon-14 in waste appeared to
become more important

Nitrogen impurities in steel measured
— Unknown if nitrogen content has been reduced since 1984 ALARA
Main presence carbon-14 in processed waste, in Zircaloy hulls, not yet known

Focus on reliable determination of carbon-14 activity concentration in spent ion
exchange resins, speciation of ionic carbon not yet identified

Also in neutron irradiated graphite, nitrogen impurities can be main source of carbon-14

— Obtaining representative samples and setting-up experiments takes time

Corrosion rates of steel at geological disposal, i.e. passivated surfaces in cementitious
materials, perhaps too hard to measure reliably DTM radionuclide carbon-14 release rate

Nitrogen at impurity level expected to be dissolved in metal lattice consequently
congruent release of carbon-14 may be expected if migration of carbon within steel at
reactor conditions can be neglected
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o Plan of content training course

e Like PETRUS-ANNETTE free of charge

— Have a look at www.projectcast.eu/training/courses for
further details

 Plan of content

— For the types of waste investigated in CAST
e Generation of carbon-14 in nuclear plant
* Calculate potential release of radionuclides

— Scheduled at the end of 2017 / early 2018

* probably in the Netherlands in order to visit the waste investigated
in CAST

e About two days

— Please send an e-mail to erika.neeft@covra.nl if you are
interested preferably after your summer holiday



http://www.projectcast.eu/training/courses
mailto:erika.neeft@covra.nl
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Thank your for attention
any questions?
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