

CArbon-14 Source Term

Final report on C-14 release and inorganic/organic ratio in leachates from TRIGA irradiated graphite (Task 5.3)

Author(s):

Crina BUCUR, Camelia ICHIM, Ionut FLOREA, Relu Dobrin, Liliana BUJOREANU, Cristina DIACONESCU

Date of issue of this report: 16/11/2017

The project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 604779, the CAST project					
Dissemination Level					
PU	Public	Χ			
RE	RE Restricted to the partners of the CAST project				
CO					

CAST – Project Overview

The CAST project (CArbon-14 Source Term) aims to develop understanding of the potential release mechanisms of carbon-14 from radioactive waste materials under conditions relevant to waste packaging and disposal to underground geological disposal facilities. The project focuses on the release of carbon-14 as dissolved and gaseous species from irradiated metals (steels, Zircaloys), irradiated graphite and from ion-exchange materials.

The CAST consortium brings together 33 partners with a range of skills and competencies in the management of radioactive wastes containing carbon-14, geological disposal research, safety case development and experimental work on gas generation. The consortium consists of national waste management organisations, research institutes, universities and commercial organisations.

The objectives of the CAST project are to gain new scientific understanding of the rate of release of carbon-14 from the corrosion of irradiated steels and Zircaloys and from the leaching of ion-exchange resins and irradiated graphites under geological disposal conditions, its speciation and how these relate to carbon-14 inventory and aqueous conditions. These results will be evaluated in the context of national safety assessments and disseminated to interested stakeholders. The new understanding should be of relevance to national safety assessment stakeholders and will also provide an opportunity for training for early career researchers.

For more information, please visit the CAST website at: http://www.projectcast.eu

CAST				
Work Package: 5	Document type:			
Task: 5.3	$\mathbf{R} = \operatorname{report}$			
Issued by: RATEN ICN	Document status:			
Internal no. 11652/30.08.2017	Final			

Document title Final report on C-14 release and inorganic/organic ratio in leachates from TRIGA irradiated graphite (Task 5.3) (D5.10)

Executive Summary

Leaching tests performed by RATEN ICN were carried out in aerobic and anaerobic conditions to assess the ¹⁴C release as dissolved species in alkaline solution simulating the cementitious environment.

The irradiated graphite available for the leaching tests is originating from a brick dismantled in 2000 from the thermal column of the TRIGA research reactor in operation at RATEN ICN.

The total ¹⁴C measurement in the powder graphite samples taken during mechanical cutting of the specimens used in the leaching tests was achieved by combustion in an oxygen rich atmosphere. Also gamma emitting radionuclides were measured by gamma spectrometry on the same powder graphite samples.

For the measurement of inorganic and organic fraction of the ¹⁴C released in leachate solutions, an analytical method based on acid stripping and wet oxidation was applied.

The ¹⁴C measurement was carried out by liquid scintillation counting (LSC) using a Tri-Carb® analyser Model 3110 TR.

The experimental results obtained from the leaching tests both in aerobic and anaerobic conditions confirm the low ¹⁴C release in alkaline environment. Less than 2% from the total ¹⁴C inventory in the specimens subject to the leaching tests was released as dissolved species.

Under aerobic conditions, the ¹⁴C released was found to be predominantly in inorganic forms (around 68% from the total ¹⁴C released), while in anaerobic conditions, the ¹⁴C is released mainly as organic species (around 65% from the total ¹⁴C released).

List of Contents

Executive Summary	i
List of Contents	iii
1 Introduction	1
2 Materials and Methods	2
2.1 Irradiated graphite used in the leaching tests	2
2.2 Experimental conditions for leaching tests	4
2.3 Methods used for total 14 C measurement	5
2.3.1 Method for total 14 C measurement	6
2.3.2 Analytical method for inorganic and organic ¹⁴ C measurement	7
3 Results and discussion	10
3.1 Total ¹⁴ C content in the irradiated graphite samples used in leaching tests	10
3.2 Recovery and memory effect of the acid stripping/wet oxidation method	12
3.3 ¹⁴ C release in alkaline solution	13
3.3.1 ¹⁴ C release in alkaline solution under aerobic conditions	13
3.3.2 ¹⁴ C release in alkaline solution under anaerobic conditions	16
4 Conclusions	19
References	20

1 Introduction

The thermal column of TRIGA Reactor is a graphite block (1716x1144x710 mm) made up of 98 rectangular graphite cells (12 rows x 8 bricks) in Aluminium cladding and it is placed into the reactor pool on the North side of the steady-state core. It was built up in 1985, using sintered graphite blocks with a density of 1.72 g/cm^3 and various geometries. The graphite was imported in the '50s from a UK producer but documents of its origin were lost. No information on its characteristics and on the impurity content could be found.

First experiments to measure the radionuclide inventory in TRIGA i-graphite were carried out under CARBOWASTE project. The measured data were complemented with data obtained by modeling, based on impurity content of the virgin graphite and the irradiation history [Toulhoat *et al.*, 2016].

In CAST WP5, RATEN ICN proposed to update the ¹⁴C inventory in the irradiated graphite from thermal column of the TRIGA 14MW reactor and to evaluate the ¹⁴C release in alkaline conditions (relevant to disposal in cementitious environment), both in terms of total ¹⁴C as well as inorganic and organic fractions.

2 Materials and Methods

2.1 Irradiated graphite used in the leaching tests

Two cylindrical bars (Figure 1) originating from a brick extracted and dismantled in 2000 from the thermal column of TRIGA reactor were available for the experimental programme carried out in RATEN ICN under CAST WP5: one cylinder with a diameter of 50 mm and length of 200 mm (noted B1), and the second one with diameter of 60 mm (noted B2) and length of 250 mm. From the extraction from the thermal column until their usage in the experimental programme, the irradiated graphite bars were stored in air. No information regarding their position in the thermal column was found.

By mechanical cutting, four cylindrical samples whose dimensions respect the ratio of diameter to height of 1 to 1 were obtained: two with 50 mm diameter and 50 mm height (from B1 bar) and two with 60 mm diameter and 50 mm height (from B2 bar).

Figure 1. The irradiated graphite cylindrical bars used to cut intact samples for leaching experiments and powder samples to measure the radionuclide content

The two intact specimens obtained from B 1 bar (Figure 2) were used for the leaching tests carried out in aerobic conditions, while those obtained from B2 bar were used in the leaching tests performed in anaerobic conditions [Toulhoat *et al.*, 2016].

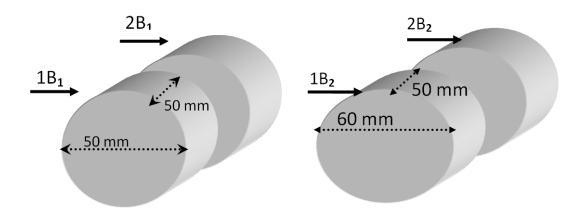


Figure 2. Intact specimens obtained from B 1 and B2 bars

The physical characteristics of the four irradiated graphite samples used in the leaching tests are reported in Table 1.

The powder graphite that resulted from cutting was sampled both from the ends of the cylindrical bars and from their middle and the resulting powder samples were used to measure the radionuclide content (14 C and gamma emitters). Four powder samples were taken from the B1 bar (two from the end of the bar and two from the middle).

Sample ID	Type of leaching test	Mass, g	Geometric volume, cm ³	Volumetric density, g/cm ²	Surface area, cm ²
1B1	aarahia	172.72	98.13	1.76	117.75
2B1	aerobic	168.24	98.12	1.72	117.75
1B2	anaarahia	250.10	141.30	1.77	150.72
2B2	anaerobic	249.70	141.30	1.76	150.72

 Table 1. Characteristics of the irradiated graphite samples used for leaching tests

To get more information on the ¹⁴C distribution inside the irradiated graphite bar, powder samples were taken from different position from the B2 bar, by cutting one cylinder of 60x50 mm in half and then in quarters (Figure 3).

CAST Final report on C-14 release and inorganic/organic ratio in leachates from TRIGA irradiated graphite (Task 5.3) (D5.10)

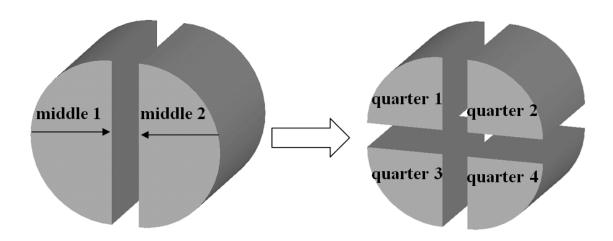


Figure 3. Cutting of one cylindrical piece of B2 bar for powder sampling

By this supplementary cutting of one cylindrical piece obtained from B2 bar, 12 powder samples were taken: 3 samples from the first half, 3 from the second half, 3 samples taken during first half cutting in quarters and 3 more samples taken during the second half cutting in quarters.

2.2 Experimental conditions for leaching tests

To evaluate the ¹⁴C release from TRIGA irradiated graphite in chemical conditions relevant to geological disposal (cementitious environment), leaching tests in aerobic and anaerobic conditions were performed.

The leaching tests were carried out in 0.1 M NaOH solution (pH ~ 13) and room temperature ($25\pm3^{\circ}$ C), in inert Pyrex glass vessels.

All leaching tests were performed in semi-dynamic conditions, with a precise time scale for leachate sampling/replacement, until equilibrium was reached. The ratio of leachate volume to exposed surface area of the cylindrical samples was held constant (it does not exceed 0.1 m) by replacing the volume of leachate sampled at each sampling time with the same volume of fresh 0.1 M NaOH solution.

The volume of leachate solution was 1118 cm^3 in the aerobic leaching tests and 1500 cm^3 in the anaerobic ones.

The anaerobic leaching tests were carried out in N_2 atmosphere, in closed Pyrex glass vessels placed on a magnetic stirrer. The lids of the glass bottles were adapted to allow N_2 purging (Figure 4) before starting the leaching tests (to ensure the anaerobic conditions) and sampling the leachate solution without opening the vessels.

Figure 4. Photo of the leaching set-up for anaerobic conditions

According to D5.4 [Petrova et al., 2015], the leachate solution was sampled and renewed after 1, 3, 7, 10, 14 days, twice on week II, once on weeks III to VI and after that monthly until the equilibrium is reached.

2.3 Methods used for total ¹⁴C measurement

For total ¹⁴C measurement both in irradiated graphite and in leachate solutions sampled from the leaching tests, non-catalytic combustion by flame oxidation method was used.

For inorganic and organic ¹⁴C measurement, an analytical method adapted after the one developed by Magnusson [Magnusson et al., 2008] for ¹⁴C measurement in spent ion exchange resins and process waters was used. This method distinguishes between ¹⁴CO₂ released during acid stripping and ¹⁴CO₂ released by wet oxidation of hydrocarbons allowing determination of the inorganic and organic fractions of ¹⁴C in irradiated graphite and leachate solutions.

2.3.1 Method for total ¹⁴C measurement

For total ¹⁴C measurement in irradiated graphite, non-catalytic combustion by flame oxidation method was used. By this method, the graphite samples are combusted in an oxygen-enriched atmosphere with a continuous flow of oxygen using Sample Oxidizer, Model 307 PerkinElmer® (Figure 5). During the combustion process any hydrogen is oxidized to H_2O and any carbon is oxidized to CO_2 .

Figure 5. The experimental device used for total ¹⁴C measurements in liquid samples

The Sample Oxidizer consists of the following major functional areas: combustion system, tritium collection system, ¹⁴C and ³H collection systems, water injection system, nitrogen system and programmer.

Since the carbon dioxide readily reacts with compounds containing amines, Carbo-Sorb® E was chosen to absorb the 14 CO₂ released during combustion process. The absorption reaction of carbon dioxide can be described as follows [Ahn at al., 2013]:

$${}^{14}CO_2 + RNH_2 \rightarrow RNH_2^{+14}COO^{-}$$
(eq. 1)
$$RNH_2^{+14}COO^{-} + \begin{bmatrix} RNH_2 \rightarrow RNH^{14}COO^{-} + RNH_3^{+} \\ H_2O \rightarrow RNH^{14}COO^{-} + H_3O^{+} \\ OH^{-} \rightarrow RNH^{14}COO^{-} + H_2O \end{bmatrix}$$
(eq. 2)
$$RNH^{14}COO^{-} + H_2O \rightarrow RNH_2 + H^{14}CO_3^{-}$$
(eq. 3)

As shown in eq. 2, the amine contained by the Carbo-sorb E solution reacts with ¹⁴Clabelled carbon dioxide to form a zwitterion, which reacts with H_2O to form a stable carbonate compound (eq. 3). This resulting carbonate compound is mixed with the LSC cocktail (Perma-fluor® E+) directly in the counting vial.

The ${}^{3}\text{H}_{2}\text{O}$ resulting from the combustion process is condensed in a cooled coil, washed into a counting vial where it is mixed with LSC cocktail (Monophase®S).

At the end of combustion process, two separate samples, one for ¹⁴C measurement and one for ³H measurement, are trapped at ambient temperature minimizing the cross-contamination.

The ¹⁴C and ³H radioactivity in the samples resulted from irradiated graphite combustion was measured by liquid scintillation counting (LSC) using a Tri-Carb® analyser Model 3110 TR. This analyser allows for ultra-low level counting mode with typical count rate in the range of 1 - 20 CPM (counts per minute) above background.

2.3.2 Analytical method for inorganic and organic ¹⁴C measurement

The analytical method used for inorganic and organic ¹⁴C measurement in leachate solutions consists in a sequential extraction of inorganic ¹⁴C and organic ¹⁴C using acid stripping and wet oxidation, adapted after the method developed by Magnusson [Magnusson et al., 2008] for ¹⁴C measurement in spent ion exchange resins and process waters.

The experimental set-up used to separate the inorganic and organic ¹⁴C from the leachate solutions is schematically presented in Figure 6. It consists in a reaction vessel, a separatory funnel, a nitrogen supply and a vacuum pump, two gas washing lines with a catalytic furnace between them.

An Erlenmayer flask (300 ml) with a three-hole rubber stopper (two for gas and separatory funnel inlets and one for gas outlet) was used as a reaction vessel, with a tap-water cooling loop, made of copper tubing that was fitted on the outer side of the Erlenmeyer flask (Figure 6) for vapour condensation. The reaction vessel was placed on a heater with magnetic stirring.

To ensure that no gases are released from the system, all tests were carried out under vacuum (0.2 bar below atmospheric pressure) and the carrier gas (N_2) was introduced into the system with a flow rate around 50 ml/min (controlled by a flow meter).

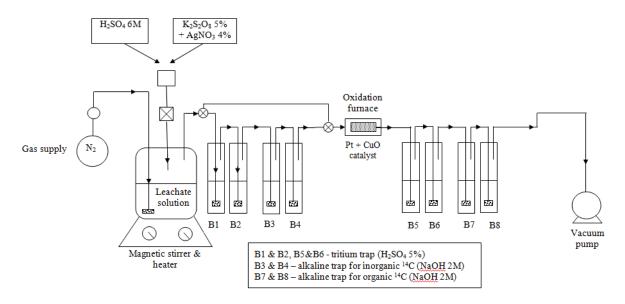


Figure 6. The experimental set-up for separation and purification of inorganic and organic ¹⁴C from the solutions sampled from leaching tests

Since the irradiated graphite contains, besides 14 C, also tritium and other beta emitters that could be released during the leaching tests and interfere with 14 C measurement by LSC, the gas washing lines contain slightly acidic traps with sulphuric acid (5% H₂SO₄) for absorption of tritium and other potential interfering radionuclides (placed both before the catalytic furnace and after it) and four alkaline traps (two placed before the catalytic furnace and two after it) with 2M sodium hydroxide (NaOH).

Since the inorganic ¹⁴C compounds (i.e. carbonates and bicarbonates) are easily decomposed by weak acids to carbon dioxide, the inorganic ¹⁴C is released during the acid stripping step of the analytical method, mainly as ¹⁴CO₂, and the gases released are carried by the carrier gas through the first gas washing line (Figure 6). If any ¹⁴C is released during this step as CO or other organic molecules, it passes through the scrubbing bottles of the first gas washing line and is oxidized to CO_2 in the catalytic furnace and subsequently absorbed in the alkaline scrubbing bottles of the second gas washing line. After the acid stripping step is accomplished, the first gas washing line is isolated from the system by means of three ways valves placed before the first scrubbing bottle and the fourth one.

Because the organic compounds have high bounding energies between atoms they are decomposed by strong oxidants such as potassium persulphate ($K_2S_2O_8$). The presence of a catalyser such as silver nitrate (AgNO₃) enhances the decomposition of the organic compounds. During the wet oxidation step the temperature of the solution in the reaction vessel is slightly increased to 90°C.

The mechanism of ¹⁴C-labelled organic compounds decomposition is based on the OH^(*) radicals and can be expressed by the following equations [Ahn et al., 2013]:

$$K_2 S_2 O_8 \xrightarrow{H_2 O} 2K^+ + S_2 O_8^{2-} \tag{eq. 4}$$

$$S_2 O_8^{2-} + 4H_2 O \xrightarrow{Ag} 2SO_4^{2-} + 2H^+ + 2OH^*$$
 (eq. 5)

$${}^{14}C_nH_m + (4n+m)OH^* \to n^{14}CO_2 + (2n+m)H_2O$$
(eq. 6)

The ¹⁴C released during the wet oxidation step of the analytical procedure (both as CO_2 , but also as CO or CH_4) is carried by the carrier gas through a catalytic furnace that ensures oxidation of any reduced compounds to CO_2 , which is afterwards absorbed in the scrubbing bottles of the second gas washing line (Figure 6).

Two wet oxidation steps were carried out in order to ensure the complete decomposition of the organic ¹⁴C-labelled compounds, and the carrier gas was purged into the system for one hour in each wet oxidation steps.

In order to not dilute the amount of ${}^{14}\text{CO}_2$ absorbed in the alkaline gas washing bottles too much, in the experimental set-up presented in Figure 6, scrubbers of small volume were used (15 ml).

The ¹⁴C activity in the alkaline traps as well as ³H activity in solutions sampled from the acid scrubbing bottles were measured by liquid scintillation counting (LSC), using a Tri-Carb® analyser Model 3110 TR.

An hionic fluor liquid scintillation cocktail was used for ¹⁴C measurement by LCS, and Ultima Gold AB liquid scintillation cocktail for tritium measurement. The ratio between sample and scintillation cocktail was 1 to 10. All samples were kept in darkness over night before counting.

Aliquots from the reaction vessel solution, as well as from all scrubbing bottles, were sampled for gamma measurements. The system used for the gamma spectrometry comprises of the following components: HPGe ORTEC detector, digiDart analyser and GammaVision software. The spectrometer was calibrated in energy and efficiency using a standard liquid source containing ⁶⁰Co, ¹³⁷Cs, ²⁴¹Am, ¹⁵²Eu in 20 ml glass vials. The same geometry was used for gamma measurements on the sampled aliquots solutions from the acid stripping/wet oxidation experiments. The counting time was higher than 8 hours for each sample.

3 Results and discussion

3.1 Total ¹⁴C content in the irradiated graphite samples used in leaching tests

Preliminary combustion tests were carried out using graphite samples spiked with radionuclides of interest (14 C – as Spec-Chec solution with known 14 C activity, 3 H, 60 Co, 137 Cs, 241 Am and 152 Eu) in order to optimize the combustion process and determine the recovery and memory effect of the combustion method. The memory effect represents the amount of 14 C, and other radionuclides of interest, absorbed on the components of the experimental set-up and the tubing used to connect them.

The optimised experimental conditions for complete graphite oxidation were the following:

- ✓ 0.14 0.16 g of graphite powder
- ✓ 10 ml CarbosorbE (liquid scintillation cocktail for 14 C)
- ✓ 10 ml PermafluorE+ (liquid scintillation cocktail for 3 H)

The labelled graphite sample was placed into a combusto-cone that was further placed into platinum ignition basket. The average combustion recovery by this method was 97%. Virgin graphite samples were also combusted for background measurements.

The memory effect was less than 0.04% and no gamma emitters were identified either in the counting vial for 14 C measurement or in the 3 H one.

The experimental results obtained for ¹⁴C content in the powder samples originating from the B1 graphite bar used for aerobic leaching tests are reported in Table 2, while those obtained for the powder samples taken from B2 bar are reported in Table 3.

Sample ID	Graphite mass used in combustion tests, g	¹⁴ C specific activity, Bq/sample	¹⁴ C specific activity, Bq/g	Observations	
virgin graphite_1	0.16	5.17E-01	3.23E+00	¹⁴ C background	
end B1_1	0.13	6.18E+01	4.75E+02	Sampled from the end of B1 bar	
end B1_2	0.14	6.18E+01	4.42E+02		
middle B1_1	0.14	6.16E+01	4.40E+02	Sampled from the middle of B1 bar	
middle B1_2	0.16	7.14E+01	4.46E+02		
		Average B1	450.75±16.36		

As it can be seen from data reported in Table 2, no notable difference in ¹⁴C content in powder samples taken from the end and middle of B1 bar was observed.

For the total 14 C content in the irradiated graphite samples used for leaching tests carried out in aerobic conditions, a value of 450.74 Bq/g was considered (the average of the 4 measurements presented in Table 2).

Sample ID	Graphite mass used in combustion tests, g	¹⁴ C specific activity, Bq/sample	¹⁴ C specific activity, Bq/g	Observations	
H1_1	0.14	1.38E+01	9.88E+01		
H1_2	0.16	1.37E+01	8.55E+01	Sampled from the first half	
H1_3	0.14	1.73E+01	1.24E+02	Sampled from the first half	
	Average H1		102.77±19.55		
H2_1	0.13	1.67E+01	1.29E+02		
H2_2	0.16	1.24E+01	7.72E+01	Sampled from the second	
H2_3	0.15	1.03E+01	6.90E+01	half	
	Average H2		91.73±32.53		
Q1_1	0.16	1.50E+01	9.36E+01		
Q1_2	0.12	1.45E+01	1.21E+02	Sampled from the first half	
Q1_3	0.12	1.39E+01	1.16E+02	cutting in quarters	
	Average Q1		110.20±14.59		
Q2_1	0.14	1.31E+01	9.39E+01		
Q2_2	0.16	1.01E+01	6.28E+01	Sampled from the second	
Q2_3	0.15	1.24E+01	8.25E+01	half cutting in quarters	
Average Q2			79.73±15.73		
		Average B2	96.11±21.20		

For the total 14 C content in the irradiated graphite samples used for leaching tests carried out in anaerobic conditions, a value of 96.11 Bq/g was considered (the average of the 12 measurements presented in Table 3).

3.2 Recovery and memory effect of the acid stripping/wet oxidation method

Preliminary acid stripping/wet oxidation tests were carried out using aqueous solutions spiked with the radionuclides of interest: inorganic ¹⁴C (in the form of sodium carbonate / bicarbonate), organic ¹⁴C (sodium acetate and lauric acid), ³H, and gamma emitters (60 Co, 137 Cs, ²⁴¹Am and ¹⁵²Eu).

The ¹⁴C recovery was between 94.79% and 98.32% [RIZZO *et al.*, 2017]. The average recovery was 96.97 % with a standard deviation of 1.46 %. No gamma emitters were

identified in any of the scrubbing bottles and the entire activity of ⁶⁰Co, ¹³⁷Cs, ²⁴¹Am and ¹⁵²Eu were found in the solutions sampled from the reaction vessel (with average recovery higher than 96%). Also the solutions sampled from the alkaline gas washing bottles were counted for tritium (using double labelled mode implemented on LCS counter) but tritium was not detected above the background in these samples. All tritium added in the reaction vessel was found in the acid scrubbing bottles. An average memory effect of less than 1% was observed.

To account for the uncertainty associated with this analytical method, 6 identical tests were carried out using solutions spiked both with inorganic and organic 14 C, as well as with tritium and gamma emitters. The standard deviation of the results of these tests was less than 15%.

3.3 ¹⁴C release in alkaline solution

The leaching behaviour is represented by the ¹⁴C cumulative release fraction (F_n) in time and also by leaching rate (R_n), computed using equations (eq. 1) and (eq. 2):

$$F_n = \frac{\sum a_n}{a_o} \tag{eq. 7}$$

$$R_n = \frac{a_n \cdot V}{a_0 \cdot S \cdot t_n} = K \cdot \frac{a_n}{t_n}$$
(eq. 8)

where: F_n is the cumulative release fraction (%) at the moment *n* of the leaching test; R_n represents the release rate (cm/day) at the moment *n* of the test; a_0 is the initial ¹⁴C content of the graphite sample (Bq); a_n represents the amount of ¹⁴C released at the moment *n* of the test (Bq) in the leachate solution; t_n represent the time in the moment *n* of the test (days); V is the sample volume (cm³); S is the geometric surface of the sample (cm²); is a test constant (cm/Bq).

3.3.1 ¹⁴C release in alkaline solution under aerobic conditions

As presented in the previous chapter, the leaching tests carried out in aerobic conditions were performed in 0.1 M NaOH solution, in semi-dynamic conditions. At the established leaching times, 30 ml of leachate were sampled and 30 ml of fresh NaOH solution were

added in the leaching vessels. Two parallel tests were performed with the main parameters reported in Table 4.

Sample ID	Sample mass, g	Leachate volume, ml	Total ¹⁴ C content, Bq
1_B1	172.72	1118	7.79E+04
2_B1	168.24	1118	7.58E+04

Table 4. Tests parameters for aerobic leaching

The volume of NaOH solution was chosen to respect the ratio between the leachate volume to the sample surface not higher than 0.1 m.

To avoid kinetic effects at the graphite – leachate solution interface (e.g., heterogeneous distribution of 14 C in the solution), the leachate solution was stirred before sampling. At each sampling time, the leachate solutions were measured by gamma spectrometry and, if no beta-gamma emitters were identified in solution, sub-samples for LSC measurement were prepared. Both tritium and radiocarbon were measured by LSC using a double-labelled method implemented on TRICARB 3100 TR.

20 ml from the leachate solution was used to evaluate the inorganic and organic ¹⁴C content by means of an acid stripping/wet oxidation method. This method also allows a good decontamination of other potential interfering radionuclides and the total ¹⁴C measured directly by LSC was comparable with the sum of inorganic and organic ¹⁴C measured by the acid stripping/wet oxidation method.

The values of ¹⁴C measured in the leachate solution at each sampling times were used to compute the ¹⁴C cumulative release fraction (F_n) and leaching rate (R_n). The measured ¹⁴C activity in the leachate solution was corrected for the dilution factor due to the leachate sampling/renewal and divided by the initial ¹⁴C activity in the i-graphite subject of the leaching test to get the cumulative release fraction. The results, both for the cumulative release fraction and for the leaching rate, are reported in Table 5.

The results obtained by the two parallel are very similar (see Figure 7) confirming the reproducibility of the leaching tests.

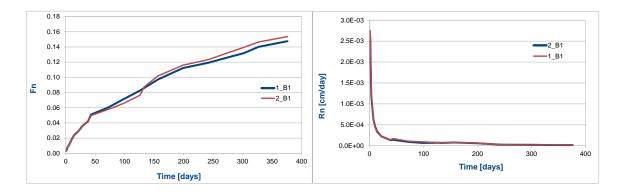


Figure 7. Evolution of the leaching rate (right) and ¹⁴C cumulative release fraction (left)

	Sample 1_B1		Sample 2_B1	
Time, days	Rn [cm/day]	Fn [%]	Rn [cm/day]	Fn [%]
1	2.75E-03	3.30E-03	2.59E-03	3.11E-03
3	1.22E-03	7.69E-03	1.20E-03	7.42E-03
7	6.29E-04	1.30E-02	6.32E-04	1.27E-02
10	4.42E-04	1.83E-02	4.66E-04	1.83E-02
14	3.17E-04	2.36E-02	3.36E-04	2.40E-02
22	2.24E-04	2.95E-02	2.22E-04	2.98E-02
28	1.89E-04	3.59E-02	1.90E-04	3.62E-02
38	1.39E-04	4.22E-02	1.38E-04	4.25E-02
43	1.14E-04	5.10E-02	1.42E-04	4.98E-02
72	1.07E-04	6.03E-02	9.25E-05	5.78E-02
98	9.36E-05	7.13E-02	6.70E-05	6.57E-02
126	7.47E-05	8.26E-02	7.16E-05	7.65E-02
156	7.68E-05	9.70E-02	6.83E-05	8.74E-02
199	6.40E-05	1.12E-01	7.62E-05	1.02E-01
243	2.47E-05	1.19E-01	5.99E-05	1.16E-01
272	1.90E-05	1.26E-01	2.59E-05	1.24E-01
302	1.71E-05	1.32E-01	2.45E-05	1.32E-01
327	2.13E-05	1.40E-01	2.17E-05	1.39E-01
376	1.65E-05	1.48E-01	1.82E-05	1.47E-01

Table 5. ¹	⁴ C cumulative release	fraction (F _n) and leaching ra	ate (R _n) for the aerobic leaching tests
-----------------------	-----------------------------------	--	--

The results of the aerobic leaching tests confirm a very low release rate of the ¹⁴C. After 376 days of immersion in alkaline solution, around 1.33E3 Bq of ¹⁴C was released as dissolved

species, representing 1.75% of the initial ¹⁴C activity of the i-graphite subject of the leaching test.

The leaching rate is higher in the first days of immersion and it decreases after that, indicating a two stage process: an initial quick release with an average release rate of $5.48E-02 \,\%$ of inventory/day^{*} during the first 48 days, followed by a slower release of around 4.62E-3 % of inventory/day. These two stages of ¹⁴C release could be associated with the initial release of the more labile species arising from the ¹⁴N impurities or from the ¹³C from different depositions, while the second stage is most probably linked to ¹⁴C created in the matrix [Carlsson et al., 2014].

The acid stripping/wet oxidation tests carried out on the leachate solutions show that in all solutions more inorganic than organic ¹⁴C was released. The ratio between inorganic and organic ¹⁴C release during the leaching test is almost constant during the test. The inorganic fraction of ¹⁴C measured in the leachant solution sampled at different leaching intervals ranges between 66% and 70% from the total ¹⁴C released as dissolved species, with an average of 67.89% and a standard deviation of 1.84%. The organic ¹⁴C on leachant solution sampled at different leaching intervals is ranging between 30% and 34% from the total ¹⁴C released as dissolved species, with an average of 32.11%.

3.3.2 ¹⁴C release in alkaline solution under anaerobic conditions

The experimental conditions for anaerobic leaching tests were similar with those described in the aerobic leaching tests, except for the volume of the leachate solution that was increased to 1500 cm^3 due to the larger diameter of the irradiated graphite available for these anaerobic leaching tests (Table 6).

Table 6. Tests parameters for anaerobic leaching

Sample ID	Sample mass, g	Leachate volume, ml	Total ¹⁴ C content, Bq
1_B2	250.10	1500	2.404E+04
2_B2	249.7	1500	2.400E+04

The volume of leachate solution sampled/renewed at each testing time was 50 ml. The values of ${}^{14}C$ measured in the sampled solutions at each sampling times were used to

^{* %} of inventory/day represent the ¹⁴C activity release in each time interval divided by the initial inventory in irradiated graphite, divided by the leaching time and multiplied by 100.

compute the ${}^{14}C$ cumulative release fraction (F_n) and leaching rate (R_n). The results are reported in Table 7.

	Sample 1_B1		Sample 2_B1	
Time, days	Rn [cm/day]	Fn	Rn [cm/day]	Fn
1	7.80E-03	9.36E-03	8.67E-03	1.04E-02
3	2.69E-03	1.90E-02	2.98E-03	2.12E-02
7	1.28E-03	2.97E-02	1.65E-03	3.51E-02
10	8.95E-04	4.05E-02	1.16E-03	4.91E-02
14	7.02E-04	5.23E-02	9.55E-04	6.51E-02
21	5.10E-04	6.51E-02	6.40E-04	8.13E-02
28	4.77E-04	8.11E-02	5.73E-04	1.01E-01
35	2.65E-04	9.23E-02	2.38E-04	1.11E-01
46	1.99E-04	1.03E-01	1.75E-04	1.20E-01
91	1.12E-04	1.15E-01	1.40E-04	1.36E-01
126	1.14E-04	1.33E-01	1.22E-04	1.54E-01
175	8.29E-05	1.50E-01	8.80E-05	1.72E-01
205	4.79E-05	1.62E-01	5.06E-05	1.85E-01
244	2.90E-05	1.70E-01	3.33E-05	1.94E-01
314	3.88E-05	1.85E-01	2.73E-05	2.05E-01
364	2.97E-05	1.98E-01	2.93E-05	2.18E-01

Similar to the aerobic leaching tests, the experimental results indicate a good reproducibility of the tests (Figure 8).

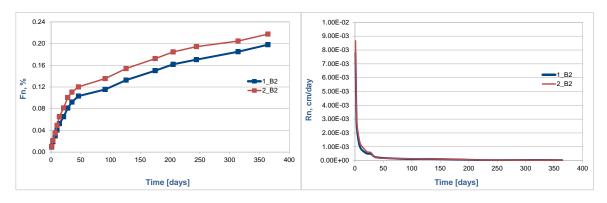


Figure 8. Evolution of the ¹⁴C cumulative release fraction (left) and leaching rate (right)

The results of the anaerobic leaching tests also show a low ${}^{14}C$ release. After 364 days of test, less than 450 Bq of ${}^{14}C$ was released as dissolved species, representing 1.85% from the initial ${}^{14}C$ activity of the i-graphite subject to the leaching test.

As it was also observed in the tests carried out in aerobic conditions, the leaching rate is high in the first days of immersion. The initial quick release takes place with an average rate of 9E-02 % of inventory/day during the first 48 days while the slower release has a rate of around 4E-3 % of inventory/day.

The acid stripping/wet oxidation tests carried out on the leachate solutions sampled at different leaching intervals show that under anaerobic conditions, more organic than inorganic ¹⁴C was released, with an almost constant ratio between organic and inorganic ¹⁴C. The organic ¹⁴C released as dissolved species under anaerobic conditions was between 61% and 66%, with an average of 64.57% (and a standard deviation of 3.08%).

No ¹⁴C was measured in gas phase, but it is expected for this high-pH conditions that any $^{14}CO_2$ released from the irradiated graphite to remain in solution as carbonate.

4 Conclusions

The results of the leaching tests confirm the very low release rate of the ¹⁴C. At the end of the leaching tests (376 days), around 1.33E3 Bq of ¹⁴C in aerobic conditions and 450 Bq in anaerobic condition was released as dissolved species, representing 1.75% and 1.85%, respectively of the initial ¹⁴C activity of the i-graphite subject of the leaching test.

Both for anaerobic and aerobic conditions, the leaching rates are high in the first days of immersion and decrease after that, indicating a two stage process: an initial quick release (less than 9E-02 % of inventory/day for the first 48 days) followed by a slower release rate (around 4E-3 % of inventory/day).

The ratio between inorganic and organic ¹⁴C release during the leaching test is almost constant, with more organic than inorganic ¹⁴C released under anaerobic conditions (with an average fraction of organic ¹⁴C of around 65% from the total ¹⁴C released) and more inorganic than organic ¹⁴C in aerobic conditions (with an average fraction of inorganic ¹⁴C of around 65% from the total ¹⁴C released) and more of around 68% from the total ¹⁴C released).

No ¹⁴C was measured in gas phase, but it is expected for this high-pH conditions that any 14 CO₂ released from the irradiated graphite to remain in solution as carbonate.

References

Ahn, H.J., Song, B.C., Sohn, S.C., Lee, M.H., Song, K., Jee, K.Y. Application of a wet oxidation method for the quantification of ³H and ¹⁴C in low-level radwastes. 2013. Appl. Radiat. Isot., 81:62-6, 2013.

Carlsson, T., Kotiluoto, P., Vilkamo, O., Kekki, T., Auterinen, I. And Rasilainen, K. 2014. Chemical aspects on the final disposal of irradiated graphite and aluminium - A literature survey, VTT Technology 156, ISBN 978-951-38-8095-8.

Magnusson, A., Stenstrom, K., Aronsson, P.O. 2008. ¹⁴C in spent ion-exchange resins and process water from nuclear reactors – A method for quantitative determination of organic and inorganic fractions. Journal of Radioanalytical and Nuclaer Chemistry, Vol. 275, No. 2, 261-273, 2008.

Petrova, E., Shcherbina, N., Williams, S. 2015. Definition of the scientific scope of leaching experiments and definition of harmonized leaching parameters (D5.4). Carbon-14 Source Term (CAST) Project, N° 604779, CAST – D5.4.

RIZZO, A., BUCUR, C., COMTE, J., Källström, K, LEGAND, S., RIZZATO, C, Večerník, P. 2017. Final Report on the Estimation of the Source Term and Speciation (D4.5). Carbon-14 Source Term (CAST) Project, N° 604779, CAST - D4.5.

Toulhoat, N., Narkunas, E., Ichim, C., Petit, L., Schumacher, S., Capone, M., Shcherbina, N., Petrova, E., Rodríguez, M., Lozano, E.M., Fugaru, V. 2015. WP5 Review of Current Understanding of Inventory and Release of C14 from Irradiated Graphite (D5.5). Carbon-14 Source Term (CAST) Project, N° 604779, CAST – D5.5.

Toulhoat, N., Narkunas, E., Ichim, C., Petit, L., Schumacher, S., Capone, M., Shcherbina, N., Petrova, E., Rodríguez, M., Lozano, E.M., Fugaru, V. 2016. WP5 Annual Progress Report – Year 3 (D5.9). Carbon-14 Source Term (CAST) Project, N° 604779, CAST - D5.9.