CArbon-14 Source Term CAST

Name: Eva de Visser-Týnová Organisation: NRG

Date: 16 January 2018

The project has received funding from the European Union's European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under grant agreement no. 604779, the CAST project.

Carbon-14 release from irradiated stainless steel

Outline

- Samples
- Leaching experiments
- Analytical methods
- Results to date (to 60 weeks)
 - C-14 liquid phase
 - C-14 gas phase
 - Co-60 liquid phase
- Interim conclusions
- Ongoing work
- Reporting

Samples

- 316L(N) austenitic stainless steel from single sheet
- 6 CT specimens irradiated at HFR, Petten SIWAS O7 experiment (2dpa, 80°C, 5 28-day cycles) in 1996/97
- C-14 and Co-60 inventory assessed by ORIGEN calculations
- Unirradiated steel from same sheet
- 3 experiments each with 3 CT specimens

Container	1	2	3
Mass (g)	228	221	222
Geo.S.A. (cm ²)	104.4	114.4	114.4
C-14 (Bq)	0.1	4.9E+07	4.9E+07
Co-60 (Bq)	0	1.6E+10	1.6E+10

CT specimen 30x28.8x12 mm³

Final container design

CT specimen support

AMEC/NRG WP2 C-14 release from irradiated steels

Liquid phase analysis

- Co-60 by gamma spectrometry, Canberra High purity Ge detector
- C-14 inorganic measurement done by acidification of solution and release of C-14 as ¹⁴CO₂, measured by LSC (Packard TriCarb 3180 TR/SL)

Gas phase sampling apparatus

- Designed and made at RCD in UK
- Captures ¹⁴CO₂, ¹⁴CO and ¹⁴CH₄ fractions by selective oxidation/ absorption on 3 soda lime columns
- Concern over potential CO sorption to metal surfaces
 - replaced all nickel-based fittings with stainless steel
- Efficiency and selectivity of 2 catalysts were measured
 - CO 94.5% (CuO) remainder oxidised on CH_4 catalyst
 - CH₄
 95% (Pt)
 with <2% removed after CO catalyst

Leaching experiments

- Leaching in 600 ml 0.1M NaOH (pH 13) under N₂ at the ambient temperature in the hot cell (~30°C)
- Gas and solution phase sampled periodically
 - purge with N₂ for collection of gas phase C-14, with selective capture and oxidation of ¹⁴CO₂, ¹⁴CO and ¹⁴C-hydrocarbons (¹⁴CH₄) as CO₂
 - then collect solution sample via dip leg for γ -spec (Co-60) and C-14

Setup for tests: 1 is soda lime column for removing C-14 from N₂ feed, 2 is leaching container where A is N₂ inlet, B is dip leg and C is N₂ outlet, Unit 1 and Unit 2 are the parts of RCD rig

Leaching experiments

AMEC/NRG WP2 C-14 release from irradiated steels

Progress with experiments

- Experiments started 31 May to 2 June 2016
 - Added 600 ml 0.1M NaOH via dip leg
- Sampling after 1, 3 and 6 weeks and 3, 5 & 13 months
 - Purged vessel with nitrogen for 7 hours
 - Collected gas phase C-14 in RCD samplers
 - Sequential oxidation and capture of ¹⁴CO₂, ¹⁴CO and ¹⁴C-hydrocarbons (¹⁴CH₄) as CO₂ on soda lime columns
 - Collected ~7ml (from week 6 ~15ml) solution sample via dip leg
- Analysis
 - Co-60 and inorganic C-14 in solution to 13 months (NRG)
 - C-14 gas phase to 13 months (RCD)

Results – C-14 inorganic solution phase

* * * * * * *

Containers 2, 3 49 MBq C-14

C-14 release from Container 2: corrosion rate ~ **3nm/yr**, at congruent release of C-14 with corrosion and uniform C-14 distribution through steel

□ Fast initial C-14 release, then rate decreases

- Container 2 C-14 activity still increasing at steady rate
- Container 3 C-14 activity has changed little between 6 and 60 weeks, with an unexplained peak after 13 weeks
- Container 1 no C-14 measurable

Results – C-14 gas phase Container 1 – unirradiated steel

- LoD <0.04 Bq</p>
- 2 analyses give positive C-14 measurement above LoD

Results – C-14 gas phase Container 2 – irradiated steel

 C.f. 292 ±8 Bq to solution phase over 13 months

- Majority C-14 release to gas phase as hydrocarbons
- ~10% CO or volatile oxygenated organic compounds
- No measurable gas phase CO₂

Results – C-14 gas phase Container 3 – irradiated steel

C.f.
 283 ± 8 Bq
 C-14 to solution
 phase over 13
 months

- Majority C-14 release to gas phase as hydrocarbons
- ~6% CO and/or volatile oxygenated organic compounds
- No measurable gas phase CO₂

Results – Co-60 solution phase

Container 2,3 16 GBq Co-60

- High Co-60 activity in leachates after 1 week
- 1 part in 10⁶ of Co-60 inventory
- Then solution activity decreases
- possible solubility limitation and/or sorption

Additional tests

□ 2 tests of Co-60 sorption/solubility:

- Setup filled with NaOH (600 g) and Co-60 spike (11,2 kBq)
- Samples taken at T0 and after 6 weeks, under N₂ atm., RT
- Test 1 without stainless steels
- Test 2 with stainless steels

Period	Experiment without steel	Experiment with steel	
	Co -60 activity (Bq/g solution)		
ТО	19.22±0.51	21.26±0.53	
T6 weeks	22.33±0.59	20.92±0.55	

Conclusions I

- There is a relatively fast initial release of accessible C-14 species from the surface of the steel on immersion in alkaline water
 - Predominantly to solution phase but also to gas phase
 - Higher proportion and rate of release to gas phase initially in Container 3
- Gas phase release predominantly hydrocarbons with up to 10% released as CO or volatile oxygenated compounds

Conclusions II

- Rate of carbon-14 release declines beyond 3-6 weeks in both Containers 2 and 3
 - Release continues at measurable rate to both gas and solution phases in Container 2
 - Rate of release to the gas phase decreases more quickly in Container 3; little change in solution phase concentration between 6 and 60 weeks
- Reasons for differences in carbon-14 release between Containers 2 and 3 are not yet understood
- Release of Co-60 was investigated as a possible marker of the rate of steel corrosion, but is not suitable due to possible solubility limitation and/or sorption to the irradiated steel

Ongoing work (outside CAST scope)

- Experiments extended with one year
- Leaching experiments continuing
 - 2 years sampling June 2018
 - Results July August 2018
- Experiments terminated after 2 years
 - vessels acid washed to recover deposits for $\gamma\text{-spec}$
- Some of the solution samples taken during periodic sampling will be analysed for total C-14 total by pyrolysis

Reporting

- D2.8 NRG Final Report on C-14 release and speciation from irradiated stainless steel under alkaline reducing conditions
- Contribution to D2.18 WP2 synthesis report
- Final Report to RWM drafted
- Work presented at KONTEC 2017 <u>http://www.kontec2017.de/en/home</u>

CArbon-14 Source Term (CAST) project

The project has received funding from the European Union's European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under grant agreement no. 604779, the CAST project.

Co-funding from Radioactive Waste Management is gratefully acknowledged.