Characterization of 14C in neutron irradiated RBMK-1500 graphite

Elena Lagzdina, Danielius Lingis, Jevgenij Gararkin, Rita Plukienė, Andrius Garbaras, Artūras Gudelis, Laurynas Juodis, Vitalij Kovalevskij, Ieva Matulaitienė, Gediminas Niaura, Žilvinas Plukis, Vidmantas Remekis

Center for Physical Sciences and Technology, Savanorių pr. 231, LT-02300 Vilnius, Lithuania

elena.lagzdina@fimc.lt

Nuclear graphite waste management strategy during decommissioning of Ignalina NPP is the pending decision in Lithuania. In the RBMK type reactor graphite is a neutron moderator and reflector. The total mass of radioactive graphite from the both Ignalina NPP units is up to 3,800 t. 14C is the limiting radionuclide for long-term disposal of irradiated graphite due to half-life of 57,30 years and relatively high activity as well as mobility in geological media. Characterization of irradiated graphite in terms of both 14C activity and chemical bonds in the lattice is crucial for the optimization of treatment technology (e.g. geological disposal, landfill storage, recycling, etc.). For this purpose numerical simulations and experimental analysis are performed.

RBMK-1500 graphite

Experimentally validated numerical 3D model of RBMK-1500 (MCNP6 and SCALE 6.1) is effective for description of the change of radiological characteristics of different parts of nuclear reactor during operation and decommissioning periods [1]. Both experimental measurements and modeling data are used for scaling factor determination [2], which subsequently could be used for sorting of spent graphite radioactive waste.

Determination of 14C specific activity in irradiated graphite

14C measurements are usually carried out by using liquid scintillation counting (LSC) technique after time consuming sample preparation procedure. Recently we proposed an express analysis method for the specific 14C activity determination in small graphite samples in the range of 1-100 µg [3]. This method is based on the graphite sample combustion in the commercial elemental analyzer and determination of 14C specific activity by using the semiconductor detectors. This method is planned to apply for determination of the graphite homogeneity profile in terms of 14C activity.

12C$^+$ ion implantation and thermal treatment

For further graphite treatment technology optimization the structural investigations of graphite should be performed. 14C mobility and position in graphite matrix is determined by neutron irradiation in the reactor at certain operation conditions. In order to understand the processes in the irradiated graphite we observe the propagation of defects induced by 12C$^+$ ion implantation at energy of 700 keV at varying fluences. The structural changes after implantation and thermal treatment later on are investigated by Raman spectroscopy. The SRIM-2013 code is also used to estimate the damage profile in the surface of the graphite samples.

Conclusions

- Experimentally validated numerical 3D model of RBMK-1500 is used for 12C$^+$ profile determination in different graphite constructions (stack, sleeve, top, bottom, side reflectors). 14C activity measurements in graphite samples is carried out by using express method or liquid scintillation counting (LSC) technique.
- The evolution of graphitic sp^2-related content as well as formation of an amorphous structure serves for understanding of location and stability of 14C in graphite matrix, while the thermal treatment carries information about recrystallization process. Further structural investigations are currently in progress.

References

2. Remekis et al., 2009, Nucl. Eng. Des. 239, 813-818