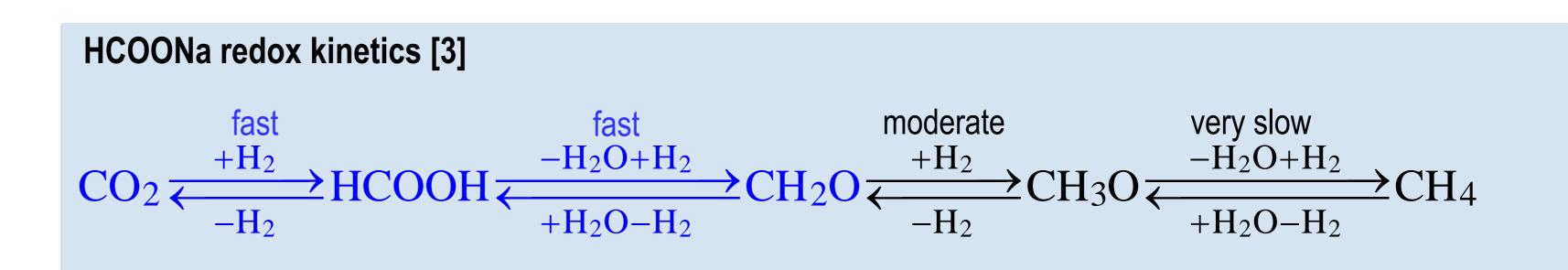
PAUL SCHERRER INSTITUT

CHEMICAL STABILITY OF LOW MOLECULAR WEIGHT ORGANIC COMPOUNDS IN THE CEMENTITIOUS NEAR FIELD OF A REPOSITORY FOR RADIOACTIVE WASTE

E. Wieland, J. Tits, B. Z. Cvetković, D. Kunz, T. Thoenen


Paul Scherrer Institut, Laboratory for Waste Management, CH-5232 Villigen PSI, Switzerland

Introduction

Experimental results

¹⁴C-containing low molecular weight (LMW) organic molecules released during the corrosion of activated steel could be chemically unstable under the hyperalkaline, reducing conditions of a cement-based repository for low- and intermediate-level radioactive waste (L/ILW). In case of complete thermodynamic equilibrium, decomposition of LMW organics is predicted while the predominant species are CH₄ and CO₂ (and its bases) [1]. However, complete thermodynamic equilibrium is rarely achieved in the C-H-O system at moderate temperatures. In case partial thermodynamic equilibrium (metastability) prevails,

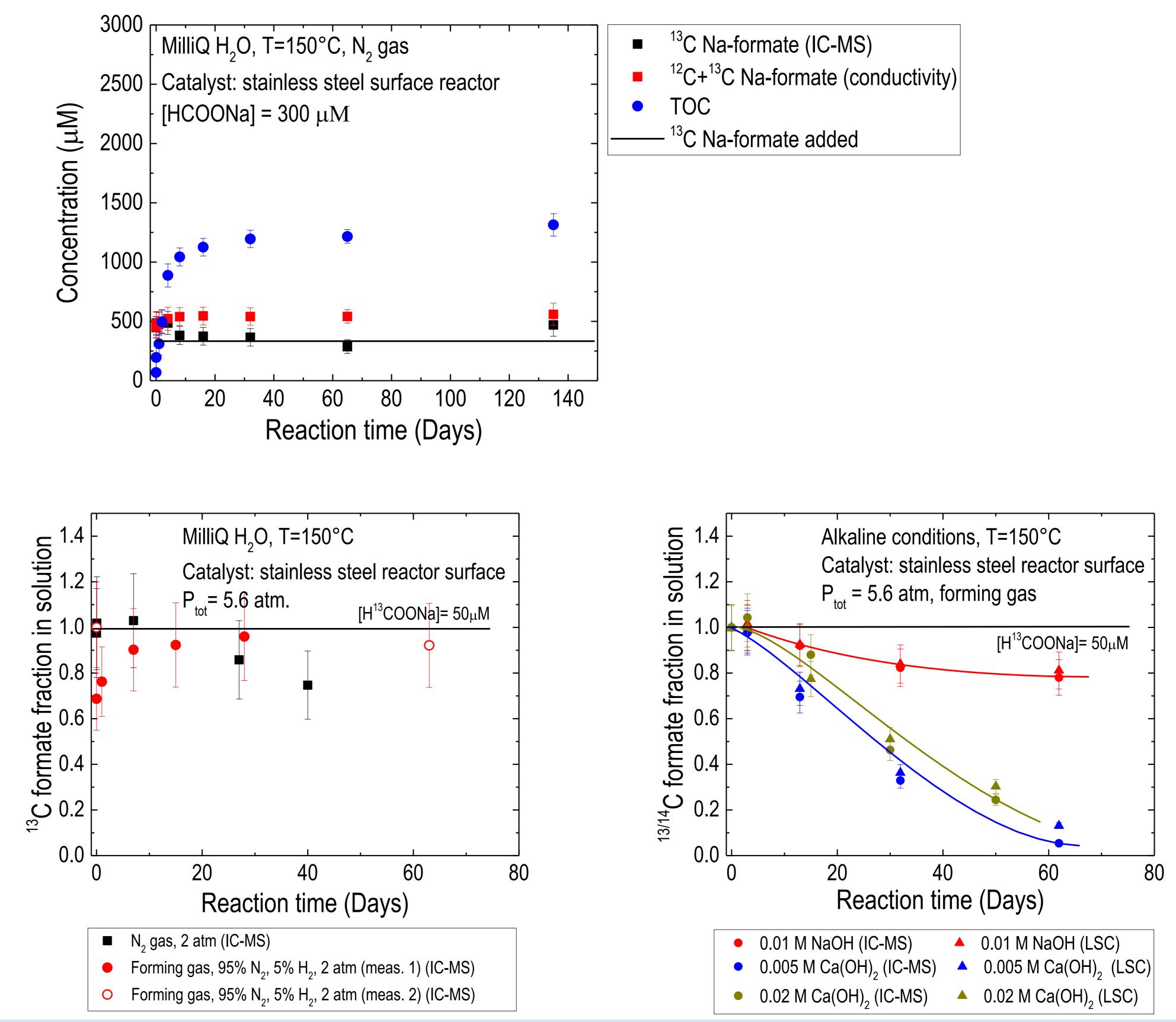
Stability experiments with Na-formate

it is still unclear what organic compounds will predominate in the repository. Note that temperatures up to 80°C and H₂ partial pressures up to 100 atm [2] can be reached in the near-field of a L/ILW repository [2].

Preliminary experiments showed that in a gas-tight reactor at room temperature under anoxic conditions (1 atm N_2), Na-formate (HCOONa) is stable over a time period of three months both in Milli-Q water and in Ca(OH)₂ solution (pH=12.5). Formate is a LMW organic molecule produced during corrosion of activated steel.

The present study aims to investigate the stability of Na-formate under conditions anticipated in the cementitious near-field of a L/ILW repository. The effects of pH, temperature and H_2 partial pressure on the formate stability have been studied. This poster shows first results.

Experimental method


Laboratory pressure reactor (Versoclave Büchi AG)

Specifications:Volume: 500 ml

Overpressure of max. 10 barGas-tight over long periods of time

 $\xrightarrow{\text{tast}}$ CO + H₂O

Online digital pressure control
 Sampling and refilling of liquid and gas phase without opening the reactor

Chemicals: ¹³C-labelled HCOONa solutions spiked with H¹⁴COONa

Analysis:Aqueous phase: IC-MS, TOC and liquid scintillation counting (LSC)Gas phase: GC-MS

Experimental set-up and conditions

Initial concentrations: 50 and 300 µM H¹³COONa
Chemical conditions: 1) Milli-Q H₂O

2) Artificial cement porewater (ACW_{eq}-II): 2 g L⁻¹ CaO
equilibrated for 2 days followed by filtration (pH = 12.5, [Ca]_{tot} = 0.02 M)

Temperature: 150°C (elevated temperature to accelerate the reaction kinetics)
Atmosphere: 2 atm N₂+3.5 atm H₂O vapour (T=150°C)

2 atm forming gas (95% N₂/5% H₂)+3.5 atm H₂O vapour (T=150°C)

Catalyst: Stainless steel reactor surface
Reaction time: up to 135 days

Presence of organic contaminants (including formate) requires the use of ¹³C-labelled HCOONa.

Stability of formate in Mill-Q water was observed at high temperature and elevated H₂ partial pressure in line with previous experiments with N₂.

Formate disappears completely from solution within a period of 2 months at T=150°C and 0.1 atm H₂ partial pressure in ACW:

- no ^{13/14}C-bearing compounds other than formate detected in the liquid phase during the degradation experiment;
- no ^{13/14}C-bearing compounds detected in the gas phase during the degradation experiment.
- ¹⁴C activity was detected in the fluid and gas phase after acid wash of the closed reactor for one day.
 - oxidation of HCOO⁻ and precipitation as Fe/Ca¹³CO₃? HCOOH \rightarrow CO₂ + H₂ \rightarrow Fe/CaCO₃

Sampling: Liquid phase: 5 mL transferred into a fluid sampling tube

Gas phase: 45 mL transferred into a gas collecting tube Volume of fluid and gas pressure were adjusted after sampling. precipitation of Ca(HCOO)₂? - Very soluble compound even at elevated temperature
 precipitation of Ca(OH)₂ and HCOO⁻ sorption onto Ca(OH)₂? – black surface precipitate on steel (magnetite?) rather than white precipitate was observed

Summary

HCOONa is stable in Milli-Q water for at least 3 months at temperatures up to 150°C and pressure of 5.6 atm in anoxic (N₂ atmosphere) and reducing conditions (5.6 atm, $P_{H_2} = 0.1$ atm). Na-formate concentration decreases with time in ACW (pH=12.5) under the same experimental conditions (150°C, 5.6 atm, $P_{H_2} = 0.1$ atm). Chemical process not yet resolved. Tentative explanation: H¹³COONa oxidation + Fe/Ca¹³CO₃ precipitation. **Next step:** Experiments to determine the critical experimental parameters by varying H₂ partial pressures and temperature and identify reaction products to check mass balance.

References

[1] Wieland E. & Hummel, W. 2015. Mineral. Mag. 79, 1275-1286. [2] Xu, T., Senger, R., Finsterle, S. 2008. Applied. Geochem., 23, 3423-3433. [3] McCollom, T. & Seewald, J.S. 2007. Chem. Rev., 107, 382-401.

Acknowledgments

This work is financed by the Swiss National Cooperative for the Disposal of Radioactive Waste (Nagra).

CAST SYMPOSIUM, 16th -18th January 2018, LYON, FRANCE